API Reference

Core Functions

ADCME.control_dependenciesMethod
control_dependencies(f, ops::Union{Array{PyObject}, PyObject})

Executes all operations in ops before any operations created inside the block.

op1 = tf.print("print op1")
op3 = tf.print("print op3")
control_dependencies(op1) do
    global op2 = tf.print("print op2")
end
run(sess, [op2,op3])

In this example, op1 must be executed before op2. But there is no guarantee when op3 will be executed. There are several possible outputs of the program such as

print op3
print op1
print op2

or

print op1
print op3
print op2
source
ADCME.get_collectionFunction
get_collection(name::Union{String, Missing})

Returns the collection with name name. If name is missing, returns all the trainable variables.

source
ADCME.has_gpuMethod
has_gpu()

Checks if GPU is available.

Note

ADCME will use GPU automatically if GPU is available. To disable GPU, set the environment variable ENV["CUDA_VISIBLE_DEVICES"]="" before importing ADCME

source
ADCME.if_elseMethod
if_else(condition::Union{PyObject,Array,Bool}, fn1, fn2, args...;kwargs...)
  • If condition is a scalar boolean, it outputs fn1 or fn2 (a function with no input argument or a tensor) based on whether condition is true or false.
  • If condition is a boolean array, if returns condition .* fn1 + (1 - condition) .* fn2
source
ADCME.independentMethod
independent(o::PyObject, args...; kwargs...)

Returns o but when computing the gradients, the top gradients will not be back-propagated into dependent variables of o.

source
ADCME.while_loopMethod
while_loop(condition::Union{PyObject,Function}, body::Function, loop_vars::Union{PyObject, Array{Any}, Array{PyObject}};
    parallel_iterations::Int64=10, kwargs...)

Loops over loop_vars while condition is true. This operator only creates one extra node to mark the loops in the computational graph.

Example

The following script computes

\[\sum_{i=1}^{10} i\]
function condition(i, ta)
    i <= 10
end
function body(i, ta)
    u = read(ta, i-1)
    ta = write(ta, i, u+1)
    i+1, ta
end
ta = TensorArray(10)
ta = write(ta, 1, constant(1.0))
i = constant(2, dtype=Int32)
_, out = while_loop(condition, body, [i, ta])
summation = stack(out)[10]
source
ADCME.save_profileFunction
save_profile(filename::String="default_timeline.json")

Save the timeline information to file filename.

  • Open Chrome and navigate to chrome://tracing
  • Load the timeline file
source
Base.bindMethod
bind(op::PyObject, ops...)

Adding operations ops to the dependencies of op. The function is useful when we want to execute ops but ops is not in the dependency of the final output. For example, if we want to print i each time i is evaluated

i = constant(1.0)
op = tf.print(i)
i = bind(i, op)
source

Variables

ADCME.VariableMethod
Variable(initial_value;kwargs...)

Constructs a ref tensor from value.

source
ADCME.cellMethod
cell(arr::Array, args...;kwargs...)

Construct a cell tensor.

Example

julia> r = cell([[1.],[2.,3.]])
julia> run(sess, r[1])
1-element Array{Float32,1}:
 1.0
julia> run(sess, r[2])
2-element Array{Float32,1}:
 2.0
 3.0
source
ADCME.constantMethod
constant(value; kwargs...)

Constructs a non-trainable tensor from value.

source
ADCME.convert_to_tensorMethod
convert_to_tensor(o::Union{PyObject, Number, Array{T}, Missing, Nothing}; dtype::Union{Type, Missing}=missing) where T<:Number
convert_to_tensor(os::Array, dtypes::Array)

Converts the input o to tensor. If o is already a tensor and dtype (if provided) is the same as that of o, the operator does nothing. Otherwise, convert_to_tensor converts the numerical array to a constant tensor or casts the data type. convert_to_tensor also accepts multiple tensors.

Example

convert_to_tensor([1.0, constant(rand(2)), rand(10)], [Float32, Float64, Float32])
source
ADCME.gradient_checkpointingFunction
gradient_checkpointing(type::String="speed")

Uses checkpointing scheme for gradients.

  • 'speed': checkpoint all outputs of convolutions and matmuls. these ops are usually the most expensive, so checkpointing them maximizes the running speed (this is a good option if nonlinearities, concats, batchnorms, etc are taking up a lot of memory)
  • 'memory': try to minimize the memory usage (currently using a very simple strategy that identifies a number of bottleneck tensors in the graph to checkpoint)
  • 'collection': look for a tensorflow collection named 'checkpoints', which holds the tensors to checkpoint
source
ADCME.gradientsMethod
gradients(ys::PyObject, xs::PyObject; kwargs...)

Computes the gradients of ys w.r.t xs.

  • If ys is a scalar, gradients returns the gradients with the same shape as xs.
  • If ys is a vector, gradients returns the Jacobian $\frac{\partial y}{\partial x}$
Note

The second usage is not suggested since ADCME adopts reverse mode automatic differentiation. Although in the case ys is a vector and xs is a scalar, gradients cleverly uses forward mode automatic differentiation, it requires that the second order gradients are implemented for relevant operators.

source
ADCME.hessianMethod

hessian computes the hessian of a scalar function f with respect to vector inputs xs

source
ADCME.placeholderMethod
placeholder(dtype::Type; kwargs...)

Creates a placeholder of the type dtype.

Example

a = placeholder(Float64, shape=[20,10])
b = placeholder(Float64, shape=[]) # a scalar 
c = placeholder(Float64, shape=[nothing]) # a vector
source
ADCME.placeholderMethod
placeholder(o::Union{Number, Array, PyObject}; kwargs...)

Creates a placeholder of the same type and size as o. o is the default value.

source
ADCME.tensorMethod
tensor(v::Array{T,2}; dtype=Float64, sparse=false) where T

Convert a generic array v to a tensor. For example,

v = [0.0 constant(1.0) 2.0
    constant(2.0) 0.0 1.0]
u = tensor(v)

u will be a $2\times 3$ tensor.

Note

This function is expensive. Use with caution.

source

Random Variables

ADCME.categoricalMethod

categorical(n::Union{PyObject, Integer}; kwargs...)

kwargs has a keyword argument logits, a 2-D Tensor with shape [batch_size, num_classes]. Each slice [i, :] represents the unnormalized log-probabilities for all classes.

source
ADCME.choiceMethod

choice(inputs::Union{PyObject, Array}, n_samples::Union{PyObject, Integer};replace::Bool=false)

Choose n_samples samples from inputs with/without replacement.

source

Sparse Matrix

ADCME.SparseTensorType
SparseTensor

A sparse matrix object. It has two fields

  • o: internal data structure

  • _diag: true if the sparse matrix is marked as "diagonal".

source
ADCME.SparseTensorMethod
SparseTensor(A::SparseMatrixCSC)
SparseTensor(A::Array{Float64, 2})

Creates a SparseTensor from numerical arrays.

source
ADCME.SparseTensorMethod
SparseTensor(I::Union{PyObject,Array{T,1}}, J::Union{PyObject,Array{T,1}}, V::Union{Array{Float64,1}, PyObject}, m::Union{S, PyObject, Nothing}=nothing, n::Union{S, PyObject, Nothing}=nothing) where {T<:Integer, S<:Integer}

Constructs a sparse tensor. Examples:

ii = [1;2;3;4]
jj = [1;2;3;4]
vv = [1.0;1.0;1.0;1.0]
s = SparseTensor(ii, jj, vv, 4, 4)
s = SparseTensor(sprand(10,10,0.3))
source
ADCME.SparseAssemblerFunction
SparseAssembler(handle::Union{PyObject, <:Integer}, n::Union{PyObject, <:Integer}, tol::Union{PyObject, <:Real}=0.0)

Creates a SparseAssembler for accumulating row, col, val for sparse matrices.

  • handle: an integer handle for creating a sparse matrix. If the handle already exists, SparseAssembler return the existing sparse matrix handle. If you are creating different sparse matrices, the handles should be different.
  • n: Number of rows of the sparse matrix.
  • tol (optional): Tolerance. SparseAssembler will treats any values less than tol as zero.

Example 1

handle = SparseAssembler(100, 5, 1e-8)
op1 = accumulate(handle, 1, [1;2;3], [1.0;2.0;3.0])
op2 = accumulate(handle, 2, [1;2;3], [1.0;2.0;3.0])
J = assemble(5, 5, [op1;op2])

J will be a SparseTensor object.

Example 2

handle = SparseAssembler(0, 5)
op1 = accumulate(handle, 1, [1;2;3], ones(3))
op2 = accumulate(handle, 1, [3], [1.])
op3 = accumulate(handle, 2, [1;3], ones(2))
J = assemble(5, 5, [op1;op2;op3]) # op1, op2, op3 are parallel
Array(run(sess, J))≈[1.0  1.0  2.0  0.0  0.0
                1.0  0.0  1.0  0.0  0.0
                0.0  0.0  0.0  0.0  0.0
                0.0  0.0  0.0  0.0  0.0
                0.0  0.0  0.0  0.0  0.0]
source
ADCME.assembleMethod
assemble(m::Union{PyObject, <:Integer}, n::Union{PyObject, <:Integer}, ops::PyObject)

Assembles the sparse matrix from the ops created by accumulate. ops is either a single output from accumulate, or concated from several ops

op1 = accumulate(handle, 1, [1;2;3], [1.0;2.0;3.0])
op2 = accumulate(handle, 2, [1;2;3], [1.0;2.0;3.0])
op = [op1;op2] # equivalent to `vcat([op1, op2]...)`

m and n are rows and columns of the sparse matrix.

See SparseAssembler for an example.

source
ADCME.findMethod
find(s::SparseTensor)

Returns the row, column and values for sparse tensor s.

source
ADCME.scatter_addMethod
scatter_update(A::Union{SparseTensor, SparseMatrixCSC{Float64,Int64}},
i1::Union{Integer, Colon, UnitRange{T}, PyObject,Array{S,1}},
i2::Union{Integer, Colon, UnitRange{T}, PyObject,Array{T,1}},
B::Union{SparseTensor, SparseMatrixCSC{Float64,Int64}})  where {S<:Real,T<:Real}

Adds B to a subblock of a sparse matrix A. Equivalently,

A[i1, i2] += B
source
ADCME.scatter_updateMethod
scatter_update(A::Union{SparseTensor, SparseMatrixCSC{Float64,Int64}},
i1::Union{Integer, Colon, UnitRange{T}, PyObject,Array{S,1}},
i2::Union{Integer, Colon, UnitRange{T}, PyObject,Array{T,1}},
B::Union{SparseTensor, SparseMatrixCSC{Float64,Int64}})  where {S<:Real,T<:Real}

Updates a subblock of a sparse matrix by B. Equivalently,

A[i1, i2] = B
source
ADCME.solveMethod
solve(A_factorized::Tuple{SparseTensor, PyObject}, rhs::Union{Array{Float64,1}, PyObject})

Solves the equation A_factorized * x = rhs using the factorized sparse matrix. See factorize.

source
ADCME.spdiagMethod
spdiag(n::Int64)

Constructs a sparse identity matrix of size $n\times n$, which is equivalent to spdiag(n, 0=>ones(n))

source
ADCME.spdiagMethod
spdiag(m::Integer, pair::Pair...)

Constructs a square $m\times m$ SparseTensor from pairs of the form

offset => array 

Example

Suppose we want to construct a $10\times 10$ tridiagonal matrix, where the lower off-diagonals are all -2, the diagonals are all 2, and the upper off-diagonals are all 3, the corresponding Julia code is

spdiag(10, -1=>-2*ones(9), 0=>2*ones(10), 1=>3ones(9))
source
ADCME.spdiagMethod
spdiag(o::PyObject)

Constructs a sparse diagonal matrix where the diagonal entries are o, which is equivalent to spdiag(length(o), 0=>o)

source
ADCME.spzeroFunction
spzero(m::Int64, n::Union{Missing, Int64}=missing)

Constructs a empty sparse matrix of size $m\times n$. n=m if n is missing

source
Base.accumulateMethod
accumulate(handle::PyObject, row::Union{PyObject, <:Integer}, cols::Union{PyObject, Array{<:Integer}}, vals::Union{PyObject, Array{<:Real}})

Accumulates row-th row. It adds the value to the sparse matrix

for k = 1:length(cols)
    A[row, cols[k]] += vals[k]
end

handle is the handle created by SparseAssembler.

See SparseAssembler for an example.

Note

The function accumulate returns a op::PyObject. Only when op is executed, the nonzero values are populated into the sparse matrix.

source
LinearAlgebra.factorizeFunction
factorize(A::Union{SparseTensor, SparseMatrixCSC}, max_cache_size::Int64 = 999999)

Factorizes $A$ for sparse matrix solutions. max_cache_size specifies the maximum cache sizes in the C++ kernels, which determines the maximum number of factorized matrices. The function returns the factorized matrix, which is basically Tuple{SparseTensor, PyObject}.

Example

A = sprand(10,10,0.7)
Afac = factorize(A) # factorizing the matrix
run(sess, Afac\rand(10)) # no factorization, solving the equation
run(sess, Afac\rand(10)) # no factorization, solving the equation
source
Base.:\Function
\(A::SparseTensor, o::PyObject, method::String="SparseLU")

Solves the linear equation $A x = o$

Method

For square matrices $A$, one of the following methods is available

  • auto: using the solver specified by ADCME.options.sparse.solver
  • SparseLU
  • SparseQR
  • SimplicialLDLT
  • SimplicialLLT
source
Base.:\Method
Base.:\(A_factorized::Tuple{SparseTensor, PyObject}, rhs::Union{Array{Float64,1}, PyObject})

A convenient overload for solve. See factorize.

source

Operations

ADCME.argsortMethod
argsort(o::PyObject; 
stable::Bool = false, rev::Bool=false, dims::Integer=-1, name::Union{Nothing,String}=nothing)

Returns the indices of a tensor that give its sorted order along an axis.

source
ADCME.batch_matmulMethod
batch_matmul(o1::PyObject, o2::PyObject)

Computes o1[i,:,:] * o2[i, :] or o1[i,:,:] * o2[i, :, :] for each index i.

source
ADCME.clipMethod
clip(o::Union{Array{Any}, Array{PyObject}}, vmin, vmax, args...;kwargs...)

Clips the values of o to the range [vmin, vmax]

Example

a = constant(3.0)
a = clip(a, 1.0, 2.0)
b = constant(rand(3))
b = clip(b, 0.5, 1.0)
source
ADCME.cvecMethod
rvec(o::PyObject; kwargs...)

Vectorizes the tensor o to a column vector, assuming column major.

source
ADCME.pmapMethod
pmap(fn::Function, o::Union{Array{PyObject}, PyObject})

Parallel for loop. There should be no data dependency between different iterations.

Example

x = constant(ones(10))
y1 = pmap(x->2.0*x, x)
y2 = pmap(x->x[1]+x[2], [x,x])
y3 = pmap(1:10, x) do z
    i = z[1]
    xi = z[2]
    xi + cast(Float64, i)
end
run(sess, y1)
run(sess, y2)
run(sess, y3)
source
ADCME.rvecMethod
rvec(o::PyObject; kwargs...)

Vectorizes the tensor o to a row vector, assuming column major.

source
ADCME.set_shapeMethod
set_shape(o::PyObject, s::Union{Array{<:Integer}, Tuple{Vararg{<:Integer, N}}}) where N
set_shape(o::PyObject, s::Integer...)

Sets the shape of o to s. s must be the actual shape of o. This function is used to convert a tensor with unknown dimensions to a tensor with concrete dimensions.

Example

a = placeholder(Float64, shape=[nothing, 10])
b = set_shape(a, 3, 10)
run(sess, b, a=>rand(3,10)) # OK 
run(sess, b, a=>rand(5,10)) # Error
run(sess, b, a=>rand(10,3)) # Error
source
ADCME.stackMethod
stack(o::PyObject)

Convert a TensorArray o to a normal tensor. The leading dimension is the size of the tensor array.

source
ADCME.topkFunction
topk(o::PyObject, k::Union{PyObject,Integer}=1;
    sorted::Bool=true, name::Union{Nothing,String}=nothing)

Finds values and indices of the k largest entries for the last dimension. If sorted=true the resulting k elements will be sorted by the values in descending order.

source
ADCME.vectorMethod
vector(i::Union{Array{T}, PyObject, UnitRange, StepRange}, v::Union{Array{Float64},PyObject},s::Union{Int64,PyObject})

Returns a vector V with length s such that

V[i] = v
source
Base.adjointMethod
adjoint(o::PyObject; kwargs...)

Returns the conjugate adjoint of o. When the dimension of o is greater than 2, only the last two dimensions are permuted, i.e., permutedims(o, [1,2,...,n,n-1])

source
Base.vecMethod
vec(o::PyObject;kwargs...)

Vectorizes the tensor o assuming column major.

source
LinearAlgebra.svdMethod
svd(o::PyObject, args...; kwargs...)

Returns a TFSVD structure which holds the following data structures

S::PyObject
U::PyObject
V::PyObject
Vt::PyObject

We have the equality $o = USV'$

Example

A = rand(10,20)
r = svd(constant(A))
A2 = r.U*diagm(r.S)*r.Vt # The value of `A2` should be equal to `A`
source
Base.mapMethod
map(fn::Function, o::Union{Array{PyObject},PyObject};
kwargs...)

Applies fn to each element of o.

  • oArray{PyObject} : returns [fn(x) for x in o]
  • o∈PyObject : splits o according to the first dimension and then applies fn.

Example

a = constant(rand(10,5))
b = map(x->sum(x), a) # equivalent to `sum(a, dims=2)`
Note

If fn is a multivariate function, we need to specify the output type using dtype keyword. For example,

a = constant(ones(10))
b = constant(ones(10))
fn = x->x[1]+x[2]
c = map(fn, [a, b], dtype=Float64)
source
Base.reshapeMethod
reshape(o::PyObject, s::Union{Array{<:Integer}, Tuple{Vararg{<:Integer, N}}}) where N 
reshape(o::PyObject, s::Integer; kwargs...)
reshape(o::PyObject, m::Integer, n::Integer; kwargs...)
reshape(o::PyObject, ::Colon, n::Integer)
reshape(o::PyObject, n::Integer, ::Colon)

Reshapes the tensor according to row major if the "TensorFlow style" syntax is used; otherwise reshaping according to column major is assumed.

Example

reshape(a, [10,5]) # row major 
reshape(a, 10, 5) # column major 
source
Base.sortMethod
Base.:sort(o::PyObject; 
rev::Bool=false, dims::Integer=-1, name::Union{Nothing,String}=nothing)

Sort a multidimensional array o along the given dimension.

  • rev: true for DESCENDING and false (default) for ASCENDING
  • dims: -1 for last dimension.
source

IO

ADCME.DiaryType
Diary(suffix::Union{String, Nothing}=nothing)

Creates a diary at a temporary directory path. It returns a writer and the corresponding directory path

source
ADCME.loadFunction
load(sess::PyObject, file::String, vars::Union{PyObject, Nothing, Array{PyObject}}=nothing, args...; kwargs...)

Loads the values of variables to the session sess from the file file. If vars is nothing, it loads values to all the trainable variables. See also save, load

source
ADCME.loggingMethod
logging(file::Union{Nothing,String}, o::PyObject...; summarize::Int64 = 3, sep::String = " ")

Logging o to file. This operator must be used with bind.

source
ADCME.psaveMethod
psave(o::PyObject, file::String)

Saves a Python objection o to file. See also pload

source
ADCME.saveFunction
save(sess::PyObject, file::String, vars::Union{PyObject, Nothing, Array{PyObject}}=nothing, args...; kwargs...)

Saves the values of vars in the session sess. The result is written into file as a dictionary. If vars is nothing, it saves all the trainable variables. See also save, load

source
ADCME.scalarFunction
scalar(o::PyObject, name::String)

Returns a scalar summary object.

source
Base.writeMethod
write(sw::Diary, step::Int64, cnt::Union{String, Array{String}})

Writes to Diary.

source

Optimization

ADCME.BFGS!Function
BFGS!(value_and_gradients_function::Function, initial_position::Union{PyObject, Array{Float64}}, max_iter::Int64=50, args...;kwargs...)

Applies the BFGS optimizer to value_and_gradients_function

source
ADCME.BFGS!Function
BFGS!(sess::PyObject, loss::PyObject, max_iter::Int64=15000; 
vars::Array{PyObject}=PyObject[], callback::Union{Function, Nothing}=nothing, kwargs...)

BFGS! is a simplified interface for BFGS optimizer. See also ScipyOptimizerInterface. callback is a callback function with signature

callback(vs::Array, iter::Int64, loss::Float64)

vars is an array consisting of tensors and its values will be the input to vs.

Example 1

a = Variable(1.0)
loss = (a - 10.0)^2
sess = Session(); init(sess)
BFGS!(sess, loss)

Example 2

θ1 = Variable(1.0)
θ2 = Variable(1.0)
loss = (θ1-1)^2 + (θ2-2)^2
cb = (vs, iter, loss)->begin 
    printstyled("[#iter $iter] θ1=$(vs[1]), θ2=$(vs[2]), loss=$loss\n", color=:green)
end
sess = Session(); init(sess)
cb(run(sess, [θ1, θ2]), 0, run(sess, loss))
BFGS!(sess, loss, 100; vars=[θ1, θ2], callback=cb)

Example 3

Use bounds to specify upper and lower bound of a variable.

x = Variable(2.0)    
loss = x^2
sess = Session(); init(sess)
BFGS!(sess, loss, bounds=Dict(x=>[1.0,3.0]))
source
ADCME.BFGS!Method
BFGS!(sess::PyObject, loss::PyObject, grads::Union{Array{T},Nothing,PyObject}, 
vars::Union{Array{PyObject},PyObject}; kwargs...) where T<:Union{Nothing, PyObject}

Running BFGS algorithm $\min_{\texttt{vars}} \texttt{loss}(\texttt{vars})$ The gradients grads must be provided. Typically, grads[i] = gradients(loss, vars[i]). grads[i] can exist on different devices (GPU or CPU).

Example 1

a = Variable(0.0)
loss = (a-1)^2
g = gradients(loss, a)
sess = Session(); init(sess)
BFGS!(sess, loss, g, a)

Example 2

a = Variable(0.0)
loss = (a^2+a-1)^2
g = gradients(loss, a)
sess = Session(); init(sess)
cb = (vs, iter, loss)->begin 
    printstyled("[#iter $iter] a = $vs, loss=$loss\n", color=:green)
end
BFGS!(sess, loss, g, a; callback = cb)
source
ADCME.CustomOptimizerMethod
CustomOptimizer(opt::Function, name::String)

creates a custom optimizer with struct name name. For example, we can integrate Optim.jl with ADCME by constructing a new optimizer

CustomOptimizer("Con") do f, df, c, dc, x0, x_L, x_U
    opt = Opt(:LD_MMA, length(x0))
    bd = zeros(length(x0)); bd[end-1:end] = [-Inf, 0.0]
    opt.lower_bounds = bd
    opt.xtol_rel = 1e-4
    opt.min_objective = (x,g)->(g[:]= df(x); return f(x)[1])
    inequality_constraint!(opt, (x,g)->( g[:]= dc(x);c(x)[1]), 1e-8)
    (minf,minx,ret) = NLopt.optimize(opt, x0)
    minx
end

Here

f: a function that returns $f(x)$

df: a function that returns $\nabla f(x)$

c: a function that returns the constraints $c(x)$

dc: a function that returns $\nabla c(x)$

x0: initial guess

nineq: number of inequality constraints

neq: number of equality constraints

x_L: lower bounds of optimizable variables

x_U: upper bounds of optimizable variables

Then we can create an optimizer with

opt = Con(loss, inequalities=[c1], equalities=[c2])

To trigger the optimization, use

minimize(opt, sess)

Note thanks to the global variable scope of Julia, step_callback, optimizer_kwargs can actually be passed from Julia environment directly.

source
ADCME.NonlinearConstrainedProblemMethod
NonlinearConstrainedProblem(f::Function, L::Function, θ::PyObject, u0::Union{PyObject, Array{Float64}}; options::Union{Dict{String, T}, Missing}=missing) where T<:Integer

Computes the gradients $\frac{\partial L}{\partial \theta}$

\[\min \ L(u) \quad \mathrm{s.t.} \ F(\theta, u) = 0\]

u0 is the initial guess for the numerical solution u, see newton_raphson.

Caveats: Assume r, A = f(θ, u) and θ are the unknown parameters, gradients(r, θ) must be defined (backprop works properly)

Returns: It returns a tuple (L: loss, C: constraints, and Graidents)

\[\left(L(u), u, \frac{\partial L}{\partial θ}\right)\]
source
ADCME.ScipyOptimizerMinimizeMethod
ScipyOptimizerMinimize(sess::PyObject, opt::PyObject; kwargs...)

Minimizes a scalar Tensor. Variables subject to optimization are updated in-place at the end of optimization.

Note that this method does not just return a minimization Op, unlike minimize; instead it actually performs minimization by executing commands to control a Session https://www.tensorflow.org/api_docs/python/tf/contrib/opt/ScipyOptimizerInterface. See also ScipyOptimizerInterface and BFGS!.

  • feed_dict: A feed dict to be passed to calls to session.run.
  • fetches: A list of Tensors to fetch and supply to loss_callback as positional arguments.
  • step_callback: A function to be called at each optimization step; arguments are the current values of all optimization variables flattened into a single vector.
  • loss_callback: A function to be called every time the loss and gradients are computed, with evaluated fetches supplied as positional arguments.
  • run_kwargs: kwargs to pass to session.run.
source
ADCME.newton_raphsonMethod
newton_raphson(func::Function, 
    u0::Union{Array,PyObject}, 
    θ::Union{Missing,PyObject, Array{<:Real}}=missing,
    args::PyObject...) where T<:Real

Newton Raphson solver for solving a nonlinear equation. ∘ func has the signature

  • func(θ::Union{Missing,PyObject}, u::PyObject)->(r::PyObject, A::Union{PyObject,SparseTensor}) (if linesearch is off)
  • func(θ::Union{Missing,PyObject}, u::PyObject)->(fval::PyObject, r::PyObject, A::Union{PyObject,SparseTensor}) (if linesearch is on)

where r is the residual and A is the Jacobian matrix; in the case where linesearch is on, the function value fval must also be supplied. ∘ θ are external parameters. ∘ u0 is the initial guess for uargs: additional inputs to the func function ∘ kwargs: keyword arguments to func

The solution can be configured via ADCME.options.newton_raphson

  • max_iter: maximum number of iterations (default=100)
  • rtol: relative tolerance for termination (default=1e-12)
  • tol: absolute tolerance for termination (default=1e-12)
  • LM: a float number, Levenberg-Marquardt modification $x^{k+1} = x^k - (J^k + \mu^k)^{-1}g^k$ (default=0.0)
  • linesearch: whether linesearch is used (default=false)

Currently, the backtracing algorithm is implemented. The parameters for linesearch are supplied via options.newton_raphson.linesearch_options

  • c1: stop criterion, $f(x^k) < f(0) + \alpha c_1 f'(0)$
  • ρ_hi: the new step size $\alpha_1\leq \rho_{hi}\alpha_0$
  • ρ_lo: the new step size $\alpha_1\geq \rho_{lo}\alpha_0$
  • iterations: maximum number of iterations for linesearch
  • maxstep: maximum allowable steps
  • αinitial: initial guess for the step size $\alpha$
source
ADCME.newton_raphson_with_gradMethod
newton_raphson_with_grad(f::Function, 
u0::Union{Array,PyObject}, 
θ::Union{Missing,PyObject, Array{<:Real}}=missing,
args::PyObject...) where T<:Real

Differentiable Newton-Raphson algorithm. See newton_raphson.

Use ADCME.options.newton_raphson to supply options.

Example

function f(θ, x)
    x^3 - θ, 3spdiag(x^2)
end

θ = constant([2. .^3;3. ^3; 4. ^3])
x = newton_raphson_with_grad(f, constant(ones(3)), θ)
run(sess, x)≈[2.;3.;4.]
run(sess, gradients(sum(x), θ))
source

Neural Networks

ADCME.aeFunction
ae(x::PyObject, output_dims::Array{Int64}, scope::String = "default";
    activation::Union{Function,String} = "tanh")

Alias: fc

Creates a neural network with intermediate numbers of neurons output_dims.

source
ADCME.aeMethod
ae(x::Union{Array{Float64}, PyObject}, 
    output_dims::Array{Int64}, 
    θ::Union{Array{Array{Float64}}, Array{PyObject}};
    activation::Union{Function,String} = "tanh")

Alias: fc

Constructs a neural network with given weights and biases θ

Example

x = constant(rand(10,30))
θ = ae_init([30, 20, 20, 5])
y = ae(x, [20, 20, 5], θ) # 10×5
source
ADCME.aeMethod
ae(x::Union{Array{Float64}, PyObject}, output_dims::Array{Int64}, θ::Union{Array{Float64}, PyObject};
activation::Union{Function,String} = "tanh")

Alias: fc

Creates a neural network with intermediate numbers of neurons output_dims. The weights are given by θ

Example 1: Explicitly construct weights and biases

x = constant(rand(10,2))
n = ae_num([2,20,20,20,2])
θ = Variable(randn(n)*0.001)
y = ae(x, [20,20,20,2], θ)

Example 2: Implicitly construct weights and biases

θ = ae_init([10,20,20,20,2]) 
x = constant(rand(10,10))
y = ae(x, [20,20,20,2], θ)

See also ae_num, ae_init.

source
ADCME.ae_initMethod
ae_init(output_dims::Array{Int64}; T::Type=Float64, method::String="xavier")
fc_init(output_dims::Array{Int64})

Return the initial weights and bias values by TensorFlow as a vector. The neural network architecture is

\[o_1 (Input layer) \rightarrow o_2 \rightarrow \cdots \rightarrow o_n (Output layer)\]

Three types of random initializers are provided

  • xavier (default). It is useful for tanh fully connected neural network.
\[W^l_i \sim \sqrt{\frac{1}{n_{l-1}}}\]
  • xavier_avg. A variant of xavier
\[W^l_i \sim \sqrt{\frac{2}{n_l + n_{l-1}}}\]
  • he. This is the activation aware initialization of weights and helps mitigate the problem

of vanishing/exploding gradients.

\[W^l_i \sim \sqrt{\frac{2}{n_{l-1}}}\]

Example

x = constant(rand(10,30))
θ = ae_init([30, 20, 20, 5])
y = ae(x, [20, 20, 5], θ) # 10×5
source
ADCME.ae_numMethod
ae_num(output_dims::Array{Int64})
fc_num(output_dims::Array{Int64})

Estimates the number of weights and biases for the neural network. Note the first dimension should be the feature dimension (this is different from ae since in ae the feature dimension can be inferred), and the last dimension should be the output dimension.

Example

x = constant(rand(10,30))
θ = ae_init([30, 20, 20, 5])
@assert ae_num([30, 20, 20, 5])==length(θ)
y = ae(x, [20, 20, 5], θ)
source
ADCME.ae_to_codeMethod
ae_to_code(file::String, scope::String; activation::String = "tanh")

Return the code string from the feed-forward neural network data in file. Usually we can immediately evaluate the code string into Julia session by

eval(Meta.parse(s))

If activation is not specified, tanh is the default.

source
ADCME.bnMethod
bn(args...;center = true, scale=true, kwargs...)

bn accepts a keyword parameter is_training.

Example

bn(inputs, name="batch_norm", is_training=true)
Note

bn should be used with control_dependency

update_ops = get_collection(UPDATE_OPS)
control_dependencies(update_ops) do 
    global train_step = AdamOptimizer().minimize(loss)
end 
source
ADCME.fcFunction
ae(x::PyObject, output_dims::Array{Int64}, scope::String = "default";
    activation::Union{Function,String} = "tanh")

Alias: fc

Creates a neural network with intermediate numbers of neurons output_dims.

ae(x::Union{Array{Float64}, PyObject}, output_dims::Array{Int64}, θ::Union{Array{Float64}, PyObject};
activation::Union{Function,String} = "tanh")

Alias: fc

Creates a neural network with intermediate numbers of neurons output_dims. The weights are given by θ

Example 1: Explicitly construct weights and biases

x = constant(rand(10,2))
n = ae_num([2,20,20,20,2])
θ = Variable(randn(n)*0.001)
y = ae(x, [20,20,20,2], θ)

Example 2: Implicitly construct weights and biases

θ = ae_init([10,20,20,20,2]) 
x = constant(rand(10,10))
y = ae(x, [20,20,20,2], θ)

See also ae_num, ae_init.

ae(x::Union{Array{Float64}, PyObject}, 
    output_dims::Array{Int64}, 
    θ::Union{Array{Array{Float64}}, Array{PyObject}};
    activation::Union{Function,String} = "tanh")

Alias: fc

Constructs a neural network with given weights and biases θ

Example

x = constant(rand(10,30))
θ = ae_init([30, 20, 20, 5])
y = ae(x, [20, 20, 5], θ) # 10×5
source
ADCME.fc_initFunction
ae_init(output_dims::Array{Int64}; T::Type=Float64, method::String="xavier")
fc_init(output_dims::Array{Int64})

Return the initial weights and bias values by TensorFlow as a vector. The neural network architecture is

$

o1 (Input layer) \rightarrow o2 \rightarrow \cdots \rightarrow o_n (Output layer) $

Three types of random initializers are provided

  • xavier (default). It is useful for tanh fully connected neural network.
$

W^li \sim \sqrt{\frac{1}{n{l-1}}} $

  • xavier_avg. A variant of xavier
$

W^li \sim \sqrt{\frac{2}{nl + n_{l-1}}} $

  • he. This is the activation aware initialization of weights and helps mitigate the problem

of vanishing/exploding gradients.

$

W^li \sim \sqrt{\frac{2}{n{l-1}}} $

Example

x = constant(rand(10,30))
θ = ae_init([30, 20, 20, 5])
y = ae(x, [20, 20, 5], θ) # 10×5
source
ADCME.fc_numFunction
ae_num(output_dims::Array{Int64})
fc_num(output_dims::Array{Int64})

Estimates the number of weights and biases for the neural network. Note the first dimension should be the feature dimension (this is different from ae since in ae the feature dimension can be inferred), and the last dimension should be the output dimension.

Example

x = constant(rand(10,30))
θ = ae_init([30, 20, 20, 5])
@assert ae_num([30, 20, 20, 5])==length(θ)
y = ae(x, [20, 20, 5], θ)
source
ADCME.fcxMethod
fcx(x::Union{Array{Float64,2},PyObject}, output_dims::Array{Int64,1}, 
θ::Union{Array{Float64,1}, PyObject};
activation::String = "tanh")

Creates a fully connected neural network with output dimension o and inputs $x\in \mathbb{R}^{m\times n}$.

\[x \rightarrow o_1 \rightarrow o_2 \rightarrow \ldots \rightarrow o_k\]

θ is the weights and biases of the neural network, e.g., θ = ae_init(output_dims).

fcx outputs two tensors:

  • the output of the neural network: $u\in \mathbb{R}^{m\times o_k}$.

  • the sensitivity of the neural network per sample: $\frac{\partial u}{\partial x}\in \mathbb{R}^{m \times o_k \times n}$

source

Generative Neural Nets

ADCME.GANType
GAN(dat::PyObject, 
    generator::Function, 
    discriminator::Function,
    loss::Union{String, Function, Missing}=missing; 
    latent_dim::Union{Missing, Int64}=missing, 
    batch_size::Union{Missing, Int64}=missing)

Creates a GAN instance.

  • dat $\in \mathbb{R}^{n\times d}$ is the training data for the GAN, where $n$ is the number of training data, and $d$ is the dimension per training data.
  • generator$:\mathbb{R}^{d'} \rightarrow \mathbb{R}^d$ is the generator function, $d'$ is the hidden dimension.
  • discriminator$:\mathbb{R}^{d} \rightarrow \mathbb{R}$ is the discriminator function.
  • loss is the loss function. See klgan, rklgan, wgan, lsgan for examples.
  • latent_dim (default=$d$, the same as output dimension) is the latent dimension.
  • batch_size (default=32) is the batch size in training.
source
ADCME.klganMethod
klgan(gan::GAN)

Computes the KL-divergence GAN loss function.

source
ADCME.lsganMethod
lsgan(gan::GAN)

Computes the least square GAN loss function.

source
ADCME.predictMethod
predict(gan::GAN, input::Union{PyObject, Array})

Predicts the GAN gan output given input input.

source
ADCME.rklganMethod
rklgan(gan::GAN)

Computes the reverse KL-divergence GAN loss function.

source
ADCME.wganMethod
wgan(gan::GAN)

Computes the Wasserstein GAN loss function.

source
ADCME.build!Method
build!(gan::GAN)

Builds the GAN instances. This function returns gan for convenience.

source

Tools

ADCME.customopFunction
customop(simple::Bool=false)

Create a new custom operator. If simple=true, the custom operator only supports CPU and does not have gradients.

Example

julia> customop() # create an editable `customop.txt` file
[ Info: Edit custom_op.txt for custom operators
julia> customop() # after editing `customop.txt`, call it again to generate interface files.
source
ADCME.debugMethod
debug(sess::PyObject, o::PyObject)

In the case a session run yields InvalidArgumentError(), this function can help print the exact error.

source
ADCME.doctorMethod
doctor()

Reports health of the current installed ADCME package. If some components are broken, possible fix is proposed.

source
ADCME.installMethod
install(s::String; force::Bool = false)

Install a custom operator via URL. s can be

  • A URL. ADCME will download the directory through git
  • A string. ADCME will search for the associated package on https://github.com/ADCMEMarket
source
ADCME.install_adeptFunction
install_adept(force::Bool=false)

Install adept-2 library: https://github.com/rjhogan/Adept-2

source
ADCME.load_opMethod
load_op(oplibpath::String, opname::String)

Loads the operator opname from library oplibpath.

source
ADCME.load_op_and_gradMethod
load_op_and_grad(oplibpath::String, opname::String; multiple::Bool=false)

Loads the operator opname from library oplibpath; gradients are also imported. If multiple is true, the operator is assumed to have multiple outputs.

source
ADCME.load_system_opFunction
load_system_op(s::String, oplib::String, grad::Bool=true)

Loads custom operator from CustomOps directory (shipped with ADCME instead of TensorFlow) For example

s = "SparseOperator"
oplib = "libSO"
grad = true

this will direct Julia to find library CustomOps/SparseOperator/libSO.dylib on MACOSX

source
ADCME.registerMethod
register(forward::Function, backward::Function; multiple::Bool=false)

Register a function forward with back-propagated gradients rule backward to the backward. ∘ forward: it takes $n$ inputs and outputs $m$ tensors. When $m>1$, the keyword multiple must be true. ∘ backward: it takes $\tilde m$ top gradients from float/double output tensors of forward, $m$ outputs of the forward, and $n$ inputs of the forward. backward outputs $n$ gradients for each input of forward. When input $i$ of forward is not float/double, backward should return nothing for the corresponding gradients.

Example

forward = x->log(1+exp(x))
backward = (dy, y, x)->dy*(1-1/(1+y))
f = register(forward, backward)
source
ADCME.test_jacobianMethod
test_jacobian(f::Function, x0::Array{Float64}; scale::Float64 = 1.0)

Testing the gradients of a vector function f: y, J = f(x) where y is a vector output and J is the Jacobian.

source
ADCME.xavier_initFunction
xavier_init(size, dtype=Float64)

Returns a matrix of size size and its values are from Xavier initialization.

source
ADCME.compileMethod
compile(s::String; force::Bool=false)

Compiles the library given by path deps/s. If force is false, compile first check whether the binary product exists. If the binary product exists, return 2. Otherwise, compile tries to compile the binary product, and returns 0 if successful; it return 1 otherwise.

source
Base.precompileFunction
precompile(force::Bool=true)

Compiles all the operators in formulas.txt.

source

ODE

ADCME.ode45Method
ode45(y::Union{PyObject, Float64, Array{Float64}}, T::Union{PyObject, Float64}, 
            NT::Union{PyObject,Int64}, f::Function, θ::Union{PyObject, Missing}=missing)

Solves

\[\frac{dy}{dt} = f(y, t, \theta)\]

with six-stage, fifth-order, Runge-Kutta method.

source
ADCME.rk4Method
rk4(y::Union{PyObject, Float64, Array{Float64}}, T::Union{PyObject, Float64}, 
            NT::Union{PyObject,Int64}, f::Function, θ::Union{PyObject, Missing}=missing)

Solves

\[\frac{dy}{dt} = f(y, t, \theta)\]

with Runge-Kutta (order 4) method.

source
ADCME.αschemeMethod
αscheme(M::Union{SparseTensor, SparseMatrixCSC}, 
    C::Union{SparseTensor, SparseMatrixCSC}, 
    K::Union{SparseTensor, SparseMatrixCSC}, 
    Force::Union{Array{Float64}, PyObject}, 
    d0::Union{Array{Float64, 1}, PyObject}, 
    v0::Union{Array{Float64, 1}, PyObject}, 
    a0::Union{Array{Float64, 1}, PyObject}, 
    Δt::Array{Float64}; 
    solve::Union{Missing, Function} = missing,
    extsolve::Union{Missing, Function} = missing, 
    ρ::Float64 = 1.0)

Generalized α-scheme. $M u_{tt} + C u_{t} + K u = F$

Force must be an array of size n×p, where d0, v0, and a0 have a size p Δt is an array (variable time step).

The generalized α scheme solves the equation by the time stepping

\[\begin{aligned} \bf d_{n+1} &= \bf d_n + h\bf v_n + h^2 \left(\left(\frac{1}{2}-\beta_2 \right)\bf a_n + \beta_2 \bf a_{n+1} \right)\\ \bf v_{n+1} &= \bf v_n + h((1-\gamma_2)\bf a_n + \gamma_2 \bf a_{n+1})\\ \bf F(t_{n+1-\alpha_{f_2}}) &= M \bf a _{n+1-\alpha_{m_2}} + C \bf v_{n+1-\alpha_{f_2}} + K \bf{d}_{n+1-\alpha_{f_2}} \end{aligned}\]

where

\[\begin{aligned} \bf d_{n+1-\alpha_{f_2}} &= (1-\alpha_{f_2})\bf d_{n+1} + \alpha_{f_2} \bf d_n\\ \bf v_{n+1-\alpha_{f_2}} &= (1-\alpha_{f_2}) \bf v_{n+1} + \alpha_{f_2} \bf v_n \\ \bf a_{n+1-\alpha_{m_2} } &= (1-\alpha_{m_2}) \bf a_{n+1} + \alpha_{m_2} \bf a_n\\ t_{n+1-\alpha_{f_2}} & = (1-\alpha_{f_2}) t_{n+1 + \alpha_{f_2}} + \alpha_{f_2}t_n \end{aligned}\]

Here the parameters are computed using

\[\begin{aligned} \gamma_2 &= \frac{1}{2} - \alpha_{m_2} + \alpha_{f_2}\\ \beta_2 &= \frac{1}{4} (1-\alpha_{m_2}+\alpha_{f_2})^2 \\ \alpha_{m_2} &= \frac{2\rho_\infty-1}{\rho_\infty+1}\\ \alpha_{f_2} &= \frac{\rho_\infty}{\rho_\infty+1} \end{aligned}\]

solve: users can provide a solver function, solve(A, rhs) for solving Ax = rhsextsolve: similar to solve, but the signature has the form

extsolve(A, rhs, i)

This provides the users with more control, e.g., (time-dependent) Dirichlet boundary conditions. See Generalized α Scheme for details.

Note

In the case $u$ has a nonzero essential boundary condition $u_b$, we let $\tilde u=u-u_b$, then $M \tilde u_{tt} + C \tilde u_t + K u = F - K u_b - C \dot u_b$

source
ADCME.αscheme_timeMethod
αscheme_time(Δt::Array{Float64}; ρ::Float64 = 1.0)

Returns the integration time $t_{i+1-\alpha_{f_2}}$ between $[t_i, t_{i+1}]$ using the alpha scheme. If $\Delta t$ has length $n$, the output will also have length $n$.

source
ADCME.runge_kuttaFunction
runge_kutta(f::Function, T::Union{PyObject, Float64}, 
            NT::Union{PyObject,Int64}, y::Union{PyObject, Float64, Array{Float64}}, θ::Union{PyObject, Missing}=missing; method::String="rk4")

Solves

\[\frac{dy}{dt} = f(y, t, \theta)\]

with Runge-Kutta method.

For example, the default solver, RK4, has the following numerical scheme per time step

\[\begin{aligned} k_1 &= \Delta t f(t_n, y_n, \theta)\\ k_2 &= \Delta t f(t_n+\Delta t/2, y_n + k_1/2, \theta)\\ k_3 &= \Delta t f(t_n+\Delta t/2, y_n + k_2/2, \theta)\\ k_4 &= \Delta t f(t_n+\Delta t, y_n + k_3, \theta)\\ y_{n+1} &= y_n + \frac{k_1}{6} +\frac{k_2}{3} +\frac{k_3}{3} +\frac{k_4}{6} \end{aligned}\]
source

Optimal Transport

ADCME.distFunction
dist(x::Union{PyObject, Array{Float64}}, y::Union{PyObject, Array{Float64}}, order::Union{Int64, PyObject}=2)

Computes the distance function with norm order. dist returns a $n\times m$ matrix, where $x\in \mathbb{R}^{n\times d}$ and $y\in \mathbb{R}^{m\times d}$, and the return $M\in \mathbb{R}^{n\times m}$

\[M_{ij} = ||x_i - y_j||_{o}\]
source
ADCME.dtwFunction
dtw(s::Union{PyObject, Array{Float64}}, t::Union{PyObject, Array{Float64}}, 
    use_fast::Bool = false)

Computes the dynamic time wrapping (DTW) distance between two time series s and t. Returns the distance and path. use_fast specifies whether fast algorithm is used. Note fast algorithm may not be accurate.

source
ADCME.empirical_sinkhornMethod
empirical_sinkhorn(x::Union{PyObject, Array{Float64}}, y::Union{PyObject, Array{Float64}}, dist::Function;
reg::Union{PyObject,Float64} = 1.0, iter::Int64 = 1000, tol::Float64 = 1e-9, method::String="sinkhorn")

Computes the empirical Wasserstein distance with sinkhorn algorithm. The implementation are adapted from https://github.com/rflamary/POT.

source
ADCME.sinkhornMethod
sinkhorn(a::Union{PyObject, Array{Float64}}, b::Union{PyObject, Array{Float64}}, M::Union{PyObject, Array{Float64}};
reg::Float64 = 1.0, iter::Int64 = 1000, tol::Float64 = 1e-9, method::String="sinkhorn")

Computes the optimal transport with Sinkhorn algorithm. The implementation are adapted from https://github.com/rflamary/POT.

source

Misc