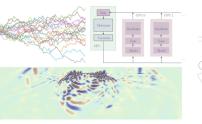
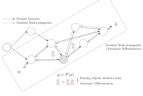
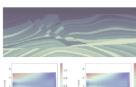
Machine Learning for Inverse Problems in Computational Engineering

Kailai Xu, and Eric Darve https://github.com/kailaix/ADCME.jl



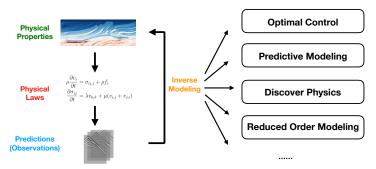




Outline

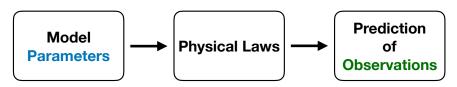
Inverse Modeling

- Inverse modeling identifies a certain set of parameters or functions with which the outputs of the forward analysis matches the desired result or measurement.
- Many real life engineering problems can be formulated as inverse modeling problems: shape optimization for improving the performance of structures, optimal control of fluid dynamic systems, etc.

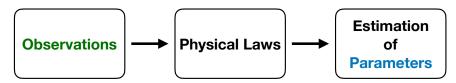


Inverse Modeling

Forward Problem



Inverse Problem



Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization problem

$$\min_{\theta} L_h(u_h)$$
 s.t. $F_h(\theta, u_h) = 0$

- The loss function L_h measures the discrepancy between the prediction u_h and the observation u_{obs} , e.g., $L_h(u_h) = ||u_h u_{\text{obs}}||_2^2$.
- \bullet θ is the model parameter to be calibrated.
- The physics constraints $F_h(\theta, u_h) = 0$ are described by a system of partial differential equations. Solving for u_h may require solving linear systems or applying an iterative algorithm such as the Newton-Raphson method.

Function Inverse Problem

$$\min_{\mathbf{f}} L_h(u_h) \quad \text{s.t. } F_h(\mathbf{f}, u_h) = 0$$

What if the unknown is a function instead of a set of parameters?

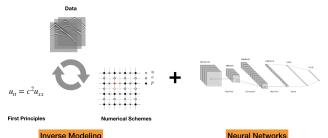
- Koopman operator in dynamical systems.
- Constitutive relations in solid mechanics.
- Turbulent closure relations in fluid mechanics.
- ...

The candidate solution space is infinite dimensional.

Machine Learning for Computational Engineering

$$\min_{\theta} L_h(u_h) \quad \text{s.t. } F_h(NN_{\theta}, u_h) = 0$$

- Deep neural networks exhibit capability of approximating high dimensional and complicated functions.
- Machine Learning for Computational Engineering: the unknown function is approximated by a deep neural network, and the physical constraints are enforced by numerical schemes.
- Satisfy the physics to the largest extent.

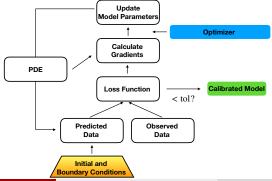


Gradient Based Optimization

$$\min_{\theta} L_h(u_h) \quad \text{s.t. } F_h(\theta, u_h) = 0 \tag{1}$$

- We can now apply a gradient-based optimization method to (??).
- The key is to calculate the gradient descent direction g^k

$$\theta^{k+1} \leftarrow \theta^k - \alpha g^k$$



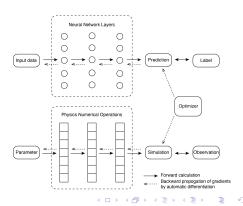
Outline

Automatic Differentiation

The fact that bridges the technical gap between machine learning and inverse modeling:

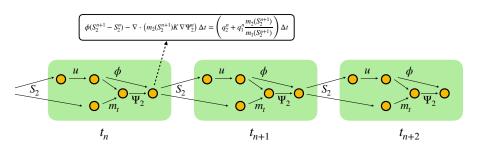
 Deep learning (and many other machine learning techniques) and numerical schemes share the same computational model: composition of individual operators.

Mathematical Fact Back-propagation || Reverse-mode Automatic Differentiation || Discrete Adjoint-State Method

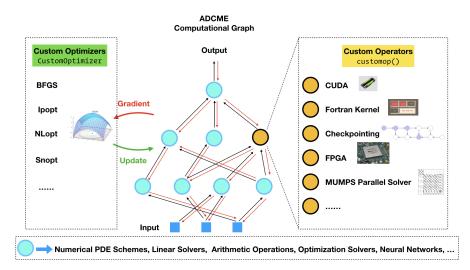


Computational Graph for Numerical Schemes

- To leverage automatic differentiation for inverse modeling, we need to express the numerical schemes in the "AD language": computational graph.
- No matter how complicated a numerical scheme is, it can be decomposed into a collection of operators that are interlinked via state variable dependencies.

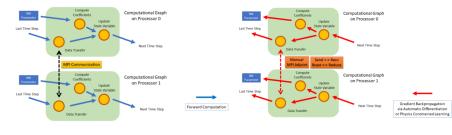


ADCME: Computational-Graph-based Numerical Simulation



Distributed Optimization

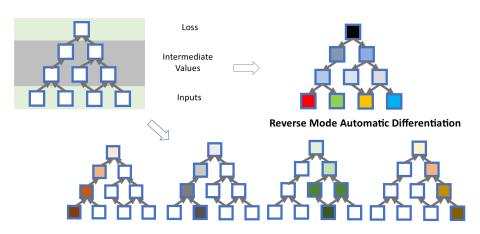
 ADCME also supports MPI-based distributed computing. The parallel model is designed specially for scientific computing.



 Key idea: Everything is an operator. Computation and communications are converters of data streams (tensors) through the computational graph.

mpi_bcast, mpi_sum, mpi_send, mpi_recv, mpi_halo_exchange, ...

Automatic Differentiation: Forward-mode and Reverse-mode



Forward Mode Automatic Differentiation

What is the Appropriate Model for Inverse Problems?

• In general, for a function $f: \mathbb{R}^n \to \mathbb{R}^m$

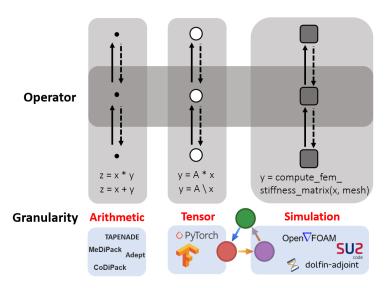
Mode	Suitable for	Complexity ¹	Application
Forward	$m\gg n$	\leq 2.5 OPS($f(x)$)	UQ
Reverse	$m \ll n$	$\leq 4 \operatorname{OPS}(f(x))$	Inverse Modeling

- There are also many other interesting topics
 - Mixed mode AD: many-to-many mappings.
 - Computing sparse Jacobian matrices using AD by exploiting sparse structures.

Margossian CC. A review of automatic differentiation and its efficient implementation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019 Jul;9(4):e1305.

¹OPS is a metric for complexity in terms of fused-multiply adds. ← ■ → ◆ ■ → ◆ ◆

Granularity of Automatic Differentiation



Outline

Inverse Modeling of the Stokes Equation

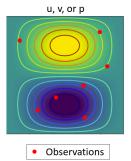
• The governing equation for the Stokes problem

$$-\nu \Delta \mathbf{u} + \nabla p = \mathbf{f} \quad \text{in } \Omega$$
$$\nabla \cdot \mathbf{u} = 0 \quad \text{in } \Omega$$
$$\mathbf{u} = \mathbf{0} \quad \text{on } \partial \Omega$$

The weak form is given by

$$(\nu \nabla u, \nabla v) - (p, \nabla \cdot v) = (f, v)$$

$$(\nabla \cdot u, q) = 0$$



Inverse Modeling of the Stokes Equation

```
nu = Variable(0.5)
K = nu*constant(compute_fem_laplace_matrix(m, n, h))
B = constant(compute_interaction_matrix(m, n, h))
Z = [K -B]
-B spdiag(zeros(size(B,1)))]
# Impose boundary conditions
bd = bcnode("all", m, n, h)
bd = [bd; bd .+ (m+1)*(n+1); ((1:m) .+ 2(m+1)*(n+1))]
Z, _ = fem_impose_Dirichlet_boundary_condition1(Z, bd, m, n, h)
# Calculate the source term
F1 = eval_f_on_gauss_pts(f1func, m, n, h)
F2 = eval_f_on_gauss_pts(f2func, m, n, h)
F = compute_fem_source_term(F1, F2, m, n, h)
rhs = [F; zeros(m*n)]
rhs[bd] = 0.0
```

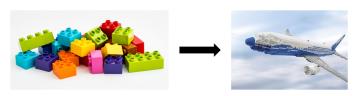
Inverse Modeling of the Stokes Equation

 The distinguished feature compared to traditional forward simulation programs: the model output is differentiable with respect to model parameters!

```
loss = sum((sol[idx] - observation[idx])^2)
g = gradients(loss, nu)
```

Optimization with a one-liner:

BFGS!(sess, loss)



PoreFlow/ADCME

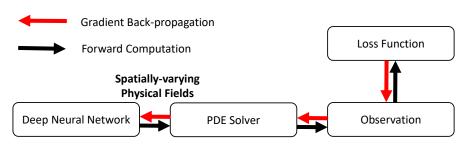
Simulation Program

Outline

Learning spatially-varying physical parameters using deep neural networks

• It is easy to adopt ADCME for modeling spatially-varying physical parameters using deep neural networks with a PDE solver.

 ${\color{blue}\mathsf{DNN}} + {\color{blue}\mathsf{PDE}} + {\color{blue}\mathsf{Data}} = {\color{blue}\mathsf{Physics}} \ {\color{blue}\mathsf{Constrained}} \ {\color{blue}\mathsf{Data-driven}} \ {\color{blue}\mathsf{Modeling}}$



Linear Elasticity

DNN + Linear Elasticity + Displacement Data

$$\sigma_{ij,j} + b_i = 0, \ x \in \Omega$$

$$\varepsilon_{ij} = \frac{1}{2} (u_{j,i} + u_{i,j}), \ x \in \Omega$$

$$\sigma_{ij} = \lambda \delta_{ij} \varepsilon_{kk} + \mu(\varepsilon_{ij} + \varepsilon_{ji}), \ x \in \Omega$$

$$\sigma_{ij} n_j = t_j, \ x \in \Gamma_N; \quad u_i = (u_0)_i, \ x \in \Gamma_D$$

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)} \quad \mu = \frac{E\nu}{1-\nu^2}$$

Stokes' Problem

DNN + Stokes' Problem + Pressure Data

$$-\nabla \cdot (\nu \nabla u) + \nabla \rho = f \quad \text{in } \Omega$$
$$\nabla \cdot u = 0 \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

Hyperelasticity

DNN + Hyperelasticity + Displacement Data

$$\min_{u} \psi = \frac{\mu}{2} (I_{c} - 2) - \frac{\mu}{2} \log(J) + \frac{\lambda}{8} \log(J)^{2}$$

$$F = I + \nabla u, \quad C = F^{T} F, \quad J = \det(C), \quad I_{c} = \operatorname{trace}(C)$$

$$\lambda = \frac{E \nu}{(1 + \nu)(1 - 2\nu)}, \quad \mu = \frac{E}{2(1 + \nu)}$$

Burgers' Equation

DNN + Burgers' Equation + Velocity Data

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \nabla \cdot (\nu \nabla u)$$
$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = \nabla \cdot (\nu \nabla v)$$
$$(x, y) \in \Omega, t \in (0, T)$$

Navier-Stokes Equation

Steady-state Navier-Stokes equation

$$(\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho}\nabla \rho + \nabla \cdot (\mathbf{v}\nabla \mathbf{u}) + \mathbf{g}$$

$$\nabla \cdot \mathbf{u} = 0$$

• Inverse problem are ubiquitous in fluid dynamics:

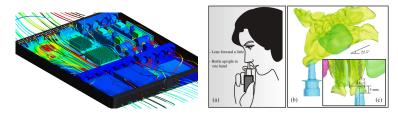
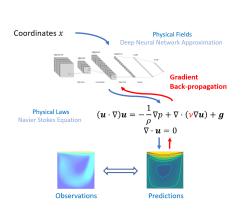
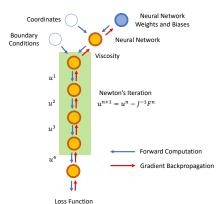


Figure: Left: electronic cooling; right: nasal drug delivery.

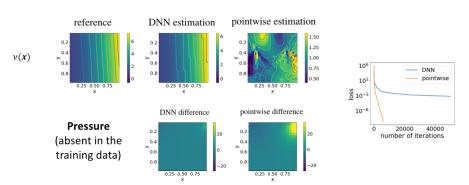
Navier-Stokes Equation





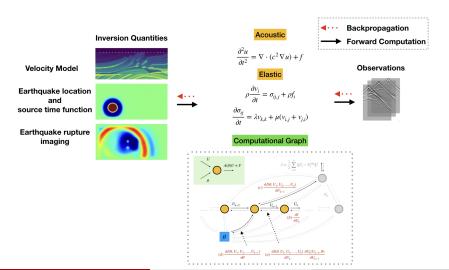
Navier-Stokes Equation

- Data: (u, v)
- Unknown: $\nu(\mathbf{x})$ (represented by a deep neural network)
- Prediction: p (absent in the training data)
- The DNN provides regularization, which generalizes the estimation better!



ADSeismic.jl: A General Approach to Seismic Inversion

 Many seismic inversion problems can be solved within a unified framework.



NNFWI: Neural-network-based Full-Waveform Inversion

• Estimate velocity models from seismic observations.

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(a) Traditional FWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(b) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(c) True Observation
$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(d) True Observation
$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(e) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(f) True Observation
$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(h) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) True Observation
$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) True Observation
$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) True Observation
$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) NNFWI:

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (m^2 \nabla u) + f$$
(l) NNFWI:

True

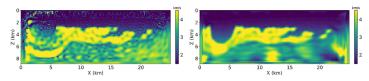
Observation

Inital Velocity

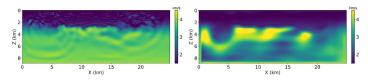
Model

NNFWI: Neural-network-based Full-Waveform Inversion

• Inversion results with a noise level $\sigma = \sigma_0$

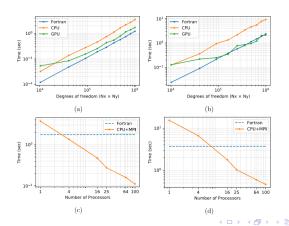


• Inversion results for the same loss function value:

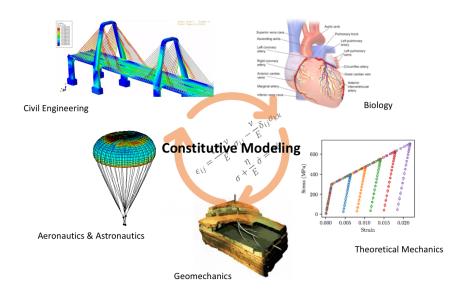


ADSeismic.jl: Performance Benchmark

- Performance is a key focus of ADCME.
- ADCME enables us to utilize heterogeneous (CPUs, GPUs, and TPUs) and distributed (CPU clusters) computing environments.
 Fortran: open-source Fortran90 programs SEISMIC_CPML



Constitutive Modeling



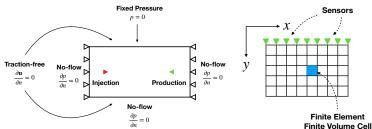
Poroelasticity

 Multi-physics Interaction of Coupled Geomechanics and Multi-Phase Flow Equations

$$\begin{aligned} \operatorname{div} & \sigma(\mathbf{u}) - b \nabla p = 0 \\ \frac{1}{M} \frac{\partial p}{\partial t} + b \frac{\partial \epsilon_{v}(\mathbf{u})}{\partial t} - \nabla \cdot \left(\frac{k}{B_{f} \mu} \nabla p \right) = f(x, t) \\ & \sigma = \sigma(\epsilon, \dot{\epsilon}) \end{aligned}$$

Approximate the constitutive relation by a neural network

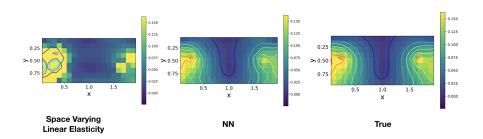
$$\sigma^{n+1} = H(\epsilon^{n+1} - \epsilon^n) + \mathcal{NN}_{\theta}(\sigma^n, \epsilon^n)$$



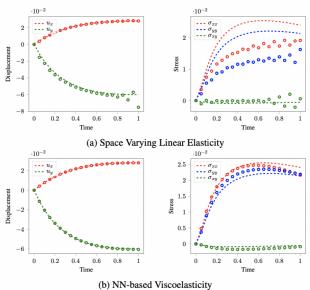
Poroelasticity

• Comparison with space varying linear elasticity approximation

$$\sigma = H(x, y)\epsilon$$



Poroelasticity



A Paradigm for Inverse Modeling

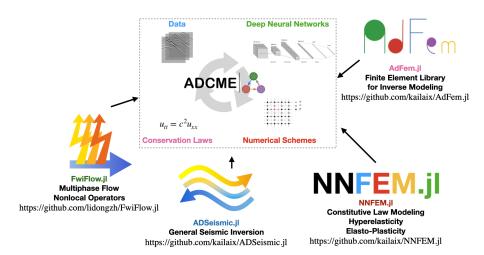
Most inverse modeling problems can be classified into 4 categories.
 To be more concrete, consider the PDE for describing physics

$$\nabla \cdot (\theta \nabla u(x)) = 0 \quad \mathcal{BC}(u(x)) = 0 \tag{2}$$

We observe some quantities depending on the solution u and want to estimate θ .

Expression	Description	ADCME Solution	Note
$\nabla \cdot (\mathbf{c} \nabla u(\mathbf{x})) = 0$	Parameter Inverse Problem	Discrete Adjoint State Method	c is the minimizer of the error functional
$\nabla \cdot (f(x)\nabla u(x)) = 0$	Function Inverse Problem	Neural Network Functional Approximator	$f(x) \approx \mathcal{NN}_{W}(x)$
$\nabla \cdot (f(u)\nabla u(x)) = 0$	Relation Inverse Problem	Residual Learning Physics Constrained Learning (PCL)	$f(u) \approx \mathcal{NN}_W(u)$
$\nabla \cdot (\boldsymbol{\varpi} \nabla u(x)) = 0$	Stochastic Inverse Problem	Physical Generative Neural Networks (PhysGNN)	$\overline{\varpi} = \mathcal{NN}_w(v_{ ext{latent}})$

A General Approach to Inverse Modeling



Reference

- Methodology and Implementation:
 - Physics Constrained Learning for Data-driven Inverse Modeling from Sparse Observations (Core techniques!)
 - A General Approach to Seismic Inversion with Automatic Differentiation
 - Time-lapse Full-waveform Inversion for Subsurface Flow Problems with Intrusive Automatic Differentiation
- Consistutive Modeling:
 - Learning Constitutive Relations from Indirect Observations Using Deep Neural Networks
 - Learning Constitutive Relations using Symmetric Positive Definite Neural Networks
 - Inverse Modeling of Viscoelasticity Materials using Physics Constrained Learning
- Learning Spatially-varying Fields:
 - Solving Inverse Problems in Steady State Navier-Stokes Equations using Deep Neural Networks