Machine Learning for Inverse Problems in
Computational Engineering

Kailai Xu, and Eric Darve
https://github.com/kailaix/ADCME. j1

ADCME ML for Computational Engineering 1/1

https://github.com/kailaix/ADCME.jl

Outline

DCME

ML for Computational Engineering

2/1

Inverse Modeling

o Inverse modeling identifies a certain set of parameters or functions
with which the outputs of the forward analysis matches the desired
result or measurement.

@ Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.

o [[Optimal Control]

Physical = L

Properties — —
l [Predictive Modeling J

i /
Physical Z?im]ﬁﬂﬁ _— Di ver Physi
Laws T = Akt v+) \ scovel ysics

l \ [Reduced Order Modeling]

Predictions AN S
(Observations) %]

ADCME ML for Computational Engineering 3/1

Inverse Modeling

Forward Problem

Model
Parameters

— | Physical Laws | —>

Inverse Problem

Observations

— | Physical Laws | —>

ADCME ML for Computational Engineering

Prediction
of
Observations

Estimation
of
Parameters

4/1

Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

m@in Lh(uh) s.t. F;,(O, Uh) =0

@ The loss function L, measures the discrepancy between the prediction
up and the observation uops, €.g., Lp(up) = |lup — tobs|3-

@ 0 is the model parameter to be calibrated.

@ The physics constraints Fx(6, up) = 0 are described by a system of
partial differential equations. Solving for u, may require solving linear
systems or applying an iterative algorithm such as the
Newton-Raphson method.

ADCME ML for Computational Engineering 5/1

Function Inverse Problem

mfin Lp(up) st. Fp(f,up) =0

What if the unknown is a function instead of a set of parameters?
@ Koopman operator in dynamical systems.
o Constitutive relations in solid mechanics.
@ Turbulent closure relations in fluid mechanics.
o ...

The candidate solution space is infinite dimensional.

ADCME ML for Computational Engineering

6/1

Machine Learning for Computational Engineering

m@in Lh(Uh) s.t. Fh(NNg, uh) =0

@ Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.

@ Machine Learning for Computational Engineering: the unknown
function is approximated by a deep neural network, and the physical
constraints are enforced by numerical schemes.

@ Satisfy the physics to the largest extent.

Data

= 2,
Uy = CTUyy

First Principles Numerical Schemes
Inverse Modeling Neural Networks

ADCME ML for Computational Engineering 7/1

Gradient Based Optimization

moin Lp(up) st Fp(0,up) =0

e We can now apply a gradient-based optimization method to (?7?).

@ The key is to calculate the gradient descent direction gk

Update
Model Parameters|

Calculate
Gradients

(o

x

+

—| 22 | =
llT
i =S

(=)

Predicted
Data

Initial and
Boundary Conditions

ADCME ML for Computational Engineering

Loss Function —— Calibrated Model
< tol?

\
)

1\

Observed
Data

8/1

Outline

DCME

ML for Computational Engineering

9/1

Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

@ Deep learning (and many other machine learning techniques) and

numerical schemes share the same computational model: composition

of individual operators.

_ ‘o o o
Mathematical Fact fo o o
() = 0 =2 0 222 O < (o) > ()
. 0 O O
Back-propagation ‘o o o

‘ | " onysice Numercal peratons)
! Physics Numerical Operations H .

Reverse-mode
Automatic Differentiation

: ! v
< <o <o P
| | Parameter | —ip — — —_ «—>» |Observation|

Discrete § b Fonvarscaculion
. ' P b auomate atoromaten
Adjoint-State Method e ‘ ’

ADCME ML for Computational Engineering

10/ 1

Computational Graph for Numerical Schemes

@ To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “"AD language”: computational
graph.

@ No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.

ntl _ gn et iy ap— (o 2S5
DS =S = V - (my(SEHK VL) At = o+ ai s)

ADCME ML for Computational Engineering 1 /1

ADCME: Computational-Graph-based Numerical
Simulation

ADCME
Computational Graph

Custom Optimizers Output Custom Operators
CustomOptimizer H customop()
BFGS cuon &

Gradient .-
Ipopt Fortran Kernel -
pop =

NLopt Checkpointing

MUMPS Parallel Solver

- 2
W/

... Input

OOOOOO

—} Numerical PDE Schemes, Linear Solvers, Arithmetic Operations, Optimization Solvers, Neural Networks, ...

DCME ML for Computational Engineering 12/1

Distributed Optimization

o ADCME also supports MPI-based distributed computing. The parallel
model is designed specially for scientific computing.

e, Computational Graph

—3

Compute

Coeficients Computational Graph
on Processor 0 —

on Processor 0

s N

Data Transier
A

T

]

i

1

i

Update
State Varable
Last Time step

A
o ~0—0~

Next Time Step

oata Tanser
A
T
1
'MPI Communication :
y 1 compue
i ot Computational Graph 1 coefficems Computational Graph
= Pr \ on Processor 1
N o on Processor 1 H o
i State ariabie y e e
rmes | W I8)
@) R ,

Data Transter
Data Transter

o Key idea: Everything is an operator. Computation and

communications are converters of data streams (tensors) through the
computational graph.

mpi_bcast, mpi_sum, mpi_send, mpi_recv, mpi_halo_exchange, ...

ADCME ML for Computational Engineering 13/1

Automatic Differentiation: Forward-mode and
Reverse-mode

Loss

Intermediate

Values |:‘>

Inputs

Reverse Mode Automatic Differentiation

£ i 0

Forward Mode Automatic Differentiation

ADCME ML for Computational Engineering 14 /1

What is the Appropriate Model for Inverse Problems?

@ In general, for a function f : R” — R™

Mode Suitable for ... Complexity! Application
Forward m > n <250PS(f(x)) UQ
Reverse m<n < 4 OPS(f(x) Inverse Modeling

@ There are also many other interesting topics

e Mixed mode AD: many-to-many mappings.
o Computing sparse Jacobian matrices using AD by exploiting sparse
structures.

Margossian CC. A review of automatic differentiation and its efficient implementation. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019 Jul;9(4):e1305.

LOPS is a metric for complexity in terms of fused-multiply adds.

ADCME ML for Computational Engineering 15/1

Granularity of Automatic Differentiation

Operator

z=x*y y=A*x y = compute_fem_
zZ=x+y y=A\x stiffness_matrix(x, mesh)
Granularity Arithmetic Tensor
TAPENADE

Simulation
O PyTorch
MeDiPack Adept
CoDiPack

L

OpenVFOAM
-0 5w

code
< dolfin-adjoint

ML for Computational Engineering

Outline

DCME ML for Computational Engineering 17 /1

Inverse Modeling of the Stokes Equation

@ The governing equation for the Stokes problem

—vAu+Vp=fFf in Q
V-u=0 in Q
u=0 onoQ

@ The weak form is given by

(vVu,Vv)—(p,V-v) =(
(V'U,q) =0

ADCME ML for Computational Engineering 18 /1

Inverse Modeling of the Stokes Equation

K = nuxconstant (compute_fem laplace matrix(m, n, h))
B = constant(compute_interaction matrix(m, n, h))

Z = [K -B'

-B spdiag(zeros(size(B,1)))]

Impose boundary conditions

bd = bcnode("all", m, n, h)

bd [bd; bd .+ (m+1D)*(n+1); ((1:m) .+ 2(m+1)*(n+1))]

Z, _ = fem_impose Dirichlet_boundary_conditioni(Z, bd, m, n, h)

Calculate the source term

F1 = eval_f_on_gauss_pts(fifunc, m, n, h)

F2 = eval_f_on_gauss_pts(f2func, m, n, h)

F = compute_fem_source_term(F1, F2, m, n, h)
rhs = [F;zeros(m#*n)]

rhs[bd] .= 0.0

sol = Z\rhs
ADCME ML for Computational Engineering 19/1

Inverse Modeling of the Stokes Equation

@ The distinguished feature compared to traditional forward simulation

programs: the model output is differentiable with respect to model
parameters!

loss = sum((sol[idx] - observation[idx]) 2)
g = gradients(loss, nu)

@ Optimization with a one-liner:

BFGS! (sess, loss)

PoreFlow/ADCME Simulation Program

ADCME ML for Computational Engineering 20/1

Outline

DCME ML for Computational Engineering 21 /1

Learning spatially-varying physical parameters using deep
neural networks

o It is easy to adopt ADCME for modeling spatially-varying physical
parameters using deep neural networks with a PDE solver.

DNN + PDE + = Physics Constrained Data-driven Modeling‘

G Gradient Back-propagation

=l Forward Computation Loss Function
Spatially-varying
Physical Fields

[Deep Neural Network }4_-;[PDE Solver]S[Observation

ADCME ML for Computational Engineering 22/1

Linear Elasticity

DNN + Linear Elasticity + Displacement Data

U,'J',J'—i-b,':O, x € Q
Ejj =

5(

oijjnj =tj, X € ;

uj i+ Ui,j)7 x €Q

ojj =)\5ij5kk + ,u(E,'j +€_,','), x € Q

u; = (U()),'7 X € FD

Ev Ev
>\ = ILL = —
(1+v)(1-2v) 1—12
ML for Computational Engineering

23/1

Stokes' Problem

DNN + Stokes’ Problem 4 Pressure Data
-V -wVu)+Vp=f inQ
V-u=0 inQ

u=0 on9Q

ADCME ML for Computational Engineering 24 /1

Hyperelasticity

DNN —+ Hyperelasticity +

miny =
u

g(/c —2)— g log(J) + g log(J)?

F=I4+Vu, C=FTF, J=det(C), I. = trace(C)

Ev E

Qro)1—20) "7 20+0)

ADCME ML for Computational Engineering

25 /1

Burgers' Equation

DNN + Burgers' Equation + Velocity Data

ou ou ou

56t gt g, = V)

ov ov ov

3 TUa T Yoy = V- (¥Vv)
(’) E Q? t E (0’ T)

ADCME ML for Computational Engineering 26 /1

Navier-Stokes Equation

@ Steady-state Navier-Stokes equation
1
(u-Vu= —;Vp—i— V-(vVu)+g
V-u=0

@ Inverse problem are ubiquitous in fluid dynamics:

Figure: Left: electronic cooling; right: nasal drug delivery.

ADCME ML for Computational Engineering 27 /1

Navier-Stokes Equation

Coordinates x \ Physical Fields
Deep Neural Network Approximation

& T oo
e F'ﬁrr T N0\
4 = Fr‘ﬁﬁ A o Gradient

,\\‘Back-propagation

Physical Laws 1
v (u-V)u:—;Vp+V-(vVu)+g

Navier Stokes Equation

¥ —

Observations Predictions

=

5

V-u=0

.

Coordinates |

Boundary
Conditions

A~
)
.

N\

Neural Network
Weights and Biases

7
. 2
W O Neural Network

N\

w
@)
@

u? ?
@)
|
@
i

Loss Function

ADCME ML for Computational Engineering

Viscosity

Newton’s Iteration

wnH =yt — Jipn

<4——— Forward Computation

ion

Gradient Backp

28 /1

Navier-Stokes Equation

e Data: (u,v)

@ Unknown: v(x) (represented by a deep neural network)

@ Prediction: p (absent in the training data)

@ The DNN provides regularization, which generalizes the estimation

better!
reference DNN estimation ~ pointwise estimation
" i
6 0.2
4
v(x) S S
2 6.
z 10 ‘ —— DNN
| | 0 0 102 pointwise
0.25 0.50 0.75 0.25 0.50 0.75 k
X X] \
8102 |
DNN difference pointwise difference 0% |
Pressure 0 | 6 20000 40000

02

(absent in the oe
training data) oo

02

number of iterations
0.4

>
0.6

08 0.8
-20

0.25 0.50 0.75 0.25 0.50 0.75
x x

ADCME ML for Computational Engineering 29 /1

ADSeismic.jl: A General Approach to Seismic Inversion

@ Many seismic inversion problems can be solved within a unified

framework.
A m < -+ Backpropagation
. - coustic : :
Inversion Quantities 3 » Forward Computation |
Pu e .
0—[’::V»(02Vu)+f
Velocity Model . Observations
=] Elastic
: o,
Earthquake location < 971 =0y, +of; < -
and > it —_—
source time function do;

e W+ pO+ v

Earthquake rupture '/'
imaging ’ Computational Graph

ADCME ML for Computational Engineering 30/1

NNFWI: Neural-network-based Full-Waveform Inversion
@ Estimate velocity models from seismic observations.

, =
L= V(mPVu)+f | SRR

a2

(a) Traditional FWI:

Inital Velocity Velocity
Model > Model —~— __—» | Prediction

—> :Forward computation
<

e[e |

ADCME ML for Computational Engineering

31/1

NNFWI: Neural-network-based Full-Waveform Inversion

@ Inversion results with a noise level o = oy

0
2

kmis

10 15 10 15
X (k) X {km)

ADCME ML for Computational Engineering 32/1

ADSeismic.jl: Performance Benchmark

@ Performance is a key focus of ADCME.

e ADCME enables us to utilize heterogeneous (CPUs, GPUs, and
TPUs) and distributed (CPU clusters) computing environments.
Fortran: open-source Fortran90 programs SEISMIC_CPML

—— Fortran 1% — Fortran
cru cou
1004 —— GPU — Gru
g g
t H
£ 107 F
107
107
104 105 106 104 108 106
Degrees of freedom (Nx x Ny) Degrees of freedam (Nx x Ny)
(a) (b)
2= Fortran --- Fortran
CPU+MPI 10! CPU+MPI
fi; 10° F
E £
= =
100
107
1 4 16 25 64 100 1 4 16 25 64 100
Number of Processors Number of Processors
(c) (d)

ADCME ML for Computational Engineering 33/1

Constitutive Modeling

Civil Engineering

600 4

%
Constitutivé Modelin
///gé Ry 'ég §

e OX © § 00
i

0000 0.005 000 0015 0020
Strain

Aeronautics & Astronautics

Theoretical Mechanics

Geomechanics

ADCME ML for Computational Engineering 34 /1

Poroelasticity

@ Multi-physics Interaction of Coupled Geomechanics and Multi-Phase
Flow Equations

dive(u) — bVp =0
1 0p Oe,(u) k _

o =o(eé€)
@ Approximate the constitutive relation by a neural network

o,n+1 _ H(€n+l _ €n) +NN9(U”,€")

Fixed Pressure
p=0

.. Sensors

‘—~ X i
» x®

" > <

Traction-free o fiow .
u_ 0 9P _
on >

No-flow
> < o y H.
on =0 | Injection Production kq an | | N
\/ No-flow

)
P _y
on

ADCME

Finite Element
Finite Volume Cell
ML for Computational Engineering

35 /1

Poroelasticity

@ Comparison with space varying linear elasticity approximation

o = H(x,y)e

0.150
0.150 0.150

oz 0125 0125

0.100 0.100

0.100
0.075 0.075
0.050 0.050

00z 0.025

0.000 0.000 0000

Space Varying
Linear Elasticity

NN True

ADCME ML for Computational Engineering 36 /1

Poroelasticity

Displacement

Displacement

ADCME

.10-2

ty o0 0000000000
Uy _,.o°‘°
°

°
o,
%%
ﬂv°'°‘aw5:r--°—
°

o

0 0.2 04 0.6 0.8 1
Time

Stress

°
o o
| 95202 9.0.9.1299.9.".5?.,..5.. -

o 0 o
°
00%0 © ° °

00

° o_©°
06°0%°0 0 4
000

v
]
©

©

0 02 0.4 0.6 08
Time

(a) Space Varying Linear Elasticity

4000000080000
o

°,
®
©evecevon

0 0.2 04 0.6 0.8 1
Time

Stress

2.5

102

°

°

S
L s =
©0 626666000800 TOTO

°

0 0.2 0.4 0.6 0.8
Time

(b) NN-based Viscoelasticity

ML for Computational Engineering

1

37 /1

A Paradigm for Inverse Modeling

@ Most inverse modeling problems can be classified into 4 categories.
To be more concrete, consider the PDE for describing physics

V- (0Vu(x)) =0 BC(u(x))=0

(2)

We observe some quantities depending on the solution v and want to

ADCME Solution

Note

estimate 6.
Expression Description
V - (cVu(x)) =0 Parameter Inverse Problem

Discrete Adjoint
State Method

c is the minimizer of
the error functional

V- (f(x)Vu(x)) =0 Function Inverse Problem

Neural Network
Functional Approximator

f(x) & NN w(x)

V - (f(u)Vu(x)) =0 Relation Inverse Problem

Residual Learning
Physics Constrained Learning (PCL)

f(u) = NNy (u)

V - (wVu(x)) =0 Stochastic Inverse Problem

Physical Generative Neural Networks
(PhysGNN)

@ = NNw(Vatent)

ADCME ML for Computational Engineering

38 /1

A General Approach to Inverse Modeling

O

/ AdFem.jl
Finite Element Library
for Inverse Modeling
ttps://github.com/kailaix/AdFem.jl

FwiFlow.jl y -
Multiphase Flow .j
Nonlocal Operators M :
https://github.com/lidongzh/FwiFlow.jl NNFEM.jl

Constitutive Law Modeling
ADSeismic.jl Hyperelasticity
General Seismic Inversion Elasto-Plasticity

https://github.com/kailaix/ADSeismic jl https://github.com/kailaix/NNFEM.jl

ADCME ML for Computational Engineering 39/1

Reference

@ Methodology and Implementation:

e Physics Constrained Learning for Data-driven Inverse Modeling from
Sparse Observations (Core techniques!)

e A General Approach to Seismic Inversion with Automatic
Differentiation

e Time-lapse Full-waveform Inversion for Subsurface Flow Problems with
Intrusive Automatic Differentiation

o Consistutive Modeling:
o Learning Constitutive Relations from Indirect Observations Using Deep
Neural Networks
e Learning Constitutive Relations using Symmetric Positive Definite
Neural Networks
e Inverse Modeling of Viscoelasticity Materials using Physics Constrained
Learning
@ Learning Spatially-varying Fields:
e Solving Inverse Problems in Steady State Navier-Stokes Equations
using Deep Neural Networks

ADCME ML for Computational Engineering 40 /1

