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Inverse Modeling

o Inverse modeling identifies a certain set of parameters or functions
with which the outputs of the forward analysis matches the desired
result or measurement.

@ Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.

o [ [ Optimal Control ]

Physical = L

Properties — —
l [ Predictive Modeling J

i /
Physical Z?im]ﬁﬂﬁ _— Di ver Physi
Laws T = Akt v+ ) \ scovel ysics

l \ [Reduced Order Modeling]

Predictions AN S
(Observations) % ]

ADCME ML for Computational Engineering 3/1
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Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

m@in Lh(uh) s.t. F;,(O, Uh) =0

@ The loss function L, measures the discrepancy between the prediction
up and the observation uops, €.g., Lp(up) = |lup — tobs|3-

@ 0 is the model parameter to be calibrated.

@ The physics constraints Fx(6, up) = 0 are described by a system of
partial differential equations. Solving for u, may require solving linear
systems or applying an iterative algorithm such as the
Newton-Raphson method.
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Function Inverse Problem

mfin Lp(up) st. Fp(f,up) =0

What if the unknown is a function instead of a set of parameters?
@ Koopman operator in dynamical systems.
o Constitutive relations in solid mechanics.
@ Turbulent closure relations in fluid mechanics.
o ...

The candidate solution space is infinite dimensional.
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Machine Learning for Computational Engineering

m@in Lh(Uh) s.t. Fh(NNg, uh) =0

@ Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.

@ Machine Learning for Computational Engineering: the unknown
function is approximated by a deep neural network, and the physical
constraints are enforced by numerical schemes.

@ Satisfy the physics to the largest extent.
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Gradient Based Optimization

moin Lp(up) st Fp(0,up) =0

e We can now apply a gradient-based optimization method to (?7?).

@ The key is to calculate the gradient descent direction gk
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Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

@ Deep learning (and many other machine learning techniques) and

numerical schemes share the same computational model: composition

of individual operators.
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Computational Graph for Numerical Schemes

@ To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “"AD language”: computational
graph.

@ No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.
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ADCME: Computational-Graph-based Numerical
Simulation
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Distributed Optimization

o ADCME also supports MPI-based distributed computing. The parallel
model is designed specially for scientific computing.
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o Key idea: Everything is an operator. Computation and

communications are converters of data streams (tensors) through the
computational graph.

mpi_bcast, mpi_sum, mpi_send, mpi_recv, mpi_halo_exchange, ...
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Automatic Differentiation: Forward-mode and
Reverse-mode
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What is the Appropriate Model for Inverse Problems?

@ In general, for a function f : R” — R™

Mode Suitable for ... Complexity! Application
Forward m > n <250PS(f(x)) UQ
Reverse m<n < 4 OPS(f(x) Inverse Modeling

@ There are also many other interesting topics

e Mixed mode AD: many-to-many mappings.
o Computing sparse Jacobian matrices using AD by exploiting sparse
structures.

Margossian CC. A review of automatic differentiation and its efficient implementation. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019 Jul;9(4):e1305.

LOPS is a metric for complexity in terms of fused-multiply adds.
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Granularity of Automatic Differentiation

Operator
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Inverse Modeling of the Stokes Equation

@ The governing equation for the Stokes problem

—vAu+Vp=fFf in Q
V-u=0 in Q
u=0 onoQ

@ The weak form is given by

(vVu,Vv)—(p,V-v) =(
(V'U,q) =0
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Inverse Modeling of the Stokes Equation

K = nuxconstant (compute_fem laplace matrix(m, n, h))
B = constant(compute_interaction matrix(m, n, h))

Z = [K -B'

-B spdiag(zeros(size(B,1)))]

# Impose boundary conditions

bd = bcnode("all", m, n, h)

bd [bd; bd .+ (m+1D)*(n+1); ((1:m) .+ 2(m+1)*(n+1))]

Z, _ = fem_impose Dirichlet_boundary_conditioni(Z, bd, m, n, h)

# Calculate the source term

F1 = eval_f_on_gauss_pts(fifunc, m, n, h)

F2 = eval_f_on_gauss_pts(f2func, m, n, h)

F = compute_fem_source_term(F1, F2, m, n, h)
rhs = [F;zeros(m#*n)]

rhs[bd] .= 0.0

sol = Z\rhs
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Inverse Modeling of the Stokes Equation

@ The distinguished feature compared to traditional forward simulation

programs: the model output is differentiable with respect to model
parameters!

loss = sum((sol[idx] - observation[idx]) 2)
g = gradients(loss, nu)

@ Optimization with a one-liner:

BFGS! (sess, loss)

PoreFlow/ADCME Simulation Program
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Learning spatially-varying physical parameters using deep
neural networks

o It is easy to adopt ADCME for modeling spatially-varying physical
parameters using deep neural networks with a PDE solver.

DNN + PDE + = Physics Constrained Data-driven Modeling‘
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Linear Elasticity

DNN + Linear Elasticity + Displacement Data

U,'J',J'—i-b,':O, x € Q
Ejj =

5(

oijjnj =tj, X € ;

uj i+ Ui,j)7 x €Q

ojj = )\5ij5kk + ,u(E,'j +€_,','), x € Q

u; = (U()),'7 X € FD

Ev Ev
>\ = ILL = —
(1+v)(1-2v) 1—12
ML for Computational Engineering

23/1



Stokes' Problem

DNN + Stokes’ Problem 4 Pressure Data
-V -wVu)+Vp=f inQ
V-u=0 inQ

u=0 on9Q
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Hyperelasticity

DNN —+ Hyperelasticity +
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Burgers' Equation

DNN + Burgers' Equation + Velocity Data
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Navier-Stokes Equation

@ Steady-state Navier-Stokes equation
1
(u-Vu= —;Vp—i— V-(vVu)+g
V-u=0

@ Inverse problem are ubiquitous in fluid dynamics:

Figure: Left: electronic cooling; right: nasal drug delivery.
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Navier-Stokes Equation
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Navier-Stokes Equation

e Data: (u,v)

@ Unknown: v(x) (represented by a deep neural network)

@ Prediction: p (absent in the training data)

@ The DNN provides regularization, which generalizes the estimation

better!
reference DNN estimation ~ pointwise estimation
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ADSeismic.jl: A General Approach to Seismic Inversion

@ Many seismic inversion problems can be solved within a unified

framework.
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NNFWI: Neural-network-based Full-Waveform Inversion
@ Estimate velocity models from seismic observations.
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NNFWI: Neural-network-based Full-Waveform Inversion

@ Inversion results with a noise level o = oy
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ADSeismic.jl: Performance Benchmark

@ Performance is a key focus of ADCME.

e ADCME enables us to utilize heterogeneous (CPUs, GPUs, and
TPUs) and distributed (CPU clusters) computing environments.
Fortran: open-source Fortran90 programs SEISMIC_CPML
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Constitutive Modeling
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Poroelasticity

@ Multi-physics Interaction of Coupled Geomechanics and Multi-Phase
Flow Equations

dive(u) — bVp =0
1 0p Oe,(u) k _

o =o(eé€)
@ Approximate the constitutive relation by a neural network
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Poroelasticity

@ Comparison with space varying linear elasticity approximation

o = H(x,y)e
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Poroelasticity

Displacement

Displacement

ADCME

.10-2

ty o0 0000000000
Uy _,.o°‘°
°

°
o,
%%
ﬂv°'°‘aw5:r--°—
°

o

0 0.2 04 0.6 0.8 1
Time

Stress

°
o o
| 95202 9.0.9.1299.9.".5?.,..5.. -

o 0 o
°
00%0 © ° °

00

° o_©°
06°0%°0 0 4
000

v
]
©

©

0 02 0.4 0.6 08
Time

(a) Space Varying Linear Elasticity

4000000080000
o

°,
®
©evecevon

0 0.2 04 0.6 0.8 1
Time

Stress

2.5

102

°

°

S
L s =
©0 626666000800 TOTO

°

0 0.2 0.4 0.6 0.8
Time

(b) NN-based Viscoelasticity

ML for Computational Engineering

1

37 /1



A Paradigm for Inverse Modeling

@ Most inverse modeling problems can be classified into 4 categories.
To be more concrete, consider the PDE for describing physics

V- (0Vu(x)) =0 BC(u(x))=0

(2)

We observe some quantities depending on the solution v and want to

ADCME Solution

Note

estimate 6.
Expression Description
V - (cVu(x)) =0 Parameter Inverse Problem

Discrete Adjoint
State Method

c is the minimizer of
the error functional

V- (f(x)Vu(x)) =0 Function Inverse Problem

Neural Network
Functional Approximator

f(x) & NN w(x)

V - (f(u)Vu(x)) =0 Relation Inverse Problem

Residual Learning
Physics Constrained Learning (PCL)

f(u) = NNy (u)

V - (wVu(x)) =0 Stochastic Inverse Problem

Physical Generative Neural Networks
(PhysGNN)

@ = NNw(Vatent)
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A General Approach to Inverse Modeling

O

/ AdFem.jl
Finite Element Library
for Inverse Modeling
ttps://github.com/kailaix/AdFem.jl

FwiFlow.jl y -
Multiphase Flow .j
Nonlocal Operators M :
https://github.com/lidongzh/FwiFlow.jl NNFEM.jl

Constitutive Law Modeling
ADSeismic.jl Hyperelasticity
General Seismic Inversion Elasto-Plasticity

https://github.com/kailaix/ADSeismic jl https://github.com/kailaix/NNFEM.jl
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Reference

@ Methodology and Implementation:

e Physics Constrained Learning for Data-driven Inverse Modeling from
Sparse Observations (Core techniques!)

e A General Approach to Seismic Inversion with Automatic
Differentiation

e Time-lapse Full-waveform Inversion for Subsurface Flow Problems with
Intrusive Automatic Differentiation

o Consistutive Modeling:
o Learning Constitutive Relations from Indirect Observations Using Deep
Neural Networks
e Learning Constitutive Relations using Symmetric Positive Definite
Neural Networks
e Inverse Modeling of Viscoelasticity Materials using Physics Constrained
Learning
@ Learning Spatially-varying Fields:
e Solving Inverse Problems in Steady State Navier-Stokes Equations
using Deep Neural Networks
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