
Machine Learning for Inverse Problems in
Computational Engineering

Kailai Xu and Eric Darve
https://github.com/kailaix/ADCME.jl

ADCME ML for Computational Engineering 1 / 1

https://github.com/kailaix/ADCME.jl

Outline

ADCME ML for Computational Engineering 2 / 1

Inverse Modeling

Forward Problem

Inverse Problem

Model
Parameters

Observations

Physical Laws

Physical Laws
Estimation

of
Parameters

Prediction
of

Observations

ADCME ML for Computational Engineering 3 / 1

Inverse Modeling

Inverse modeling identifies a certain set of parameters or functions
with which the outputs of the forward analysis matches the desired
result or measurement.

Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.t

Physical
Properties

Physical
Laws

Predictions
(Observations)

Inverse
Modeling

……

Optimal Control

Predictive Modeling

Discover Physics

Reduced Order Modeling

ADCME ML for Computational Engineering 4 / 1

Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

The loss function Lh measures the discrepancy between the prediction
uh and the observation uobs, e.g., Lh(uh) = ‖uh − uobs‖2

2.

θ is the model parameter to be calibrated.

The physics constraints Fh(θ, uh) = 0 are described by a system of
partial differential equations. Solving for uh may require solving linear
systems or applying an iterative algorithm such as the
Newton-Raphson method.

ADCME ML for Computational Engineering 5 / 1

Function Inverse Problem

min
f

Lh(uh) s.t. Fh(f , uh) = 0

What if the unknown is a function instead of a set of parameters?

Koopman operator in dynamical systems.

Constitutive relations in solid mechanics.

Turbulent closure relations in fluid mechanics.

...

The candidate solution space is infinite dimensional.

ADCME ML for Computational Engineering 6 / 1

Machine Learning for Computational Engineering

min
θ

Lh(uh) s.t. Fh(NNθ, uh) = 0

Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.
Machine Learning for Computational Engineering: the unknown
function is approximated by a deep neural network, and the physical
constraints are enforced by numerical schemes.
Satisfy the physics to the largest extent.

ADCME ML for Computational Engineering 7 / 1

Gradient Based Optimization

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0 (1)

We can now apply a gradient-based optimization method to (??).
The key is to calculate the gradient descent direction gk

θk+1 ← θk − αgk

Predicted
Data

Observed
Data

Loss Function

Calculate
Gradients

Update
Model Parameters

PDE

Initial and
Boundary Conditions

Optimizer

< tol?
Calibrated Model

ADCME ML for Computational Engineering 8 / 1

Outline

ADCME ML for Computational Engineering 9 / 1

Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

Deep learning (and many other machine learning techniques) and
numerical schemes share the same computational model: composition
of individual operators.

Mathematical Fact

Back-propagation
||

Reverse-mode
Automatic Differentiation

||
Discrete

Adjoint-State Method

ADCME ML for Computational Engineering 10 / 1

Automatic Differentiation: Forward-mode and
Reverse-mode

ADCME ML for Computational Engineering 11 / 1

What is the Appropriate Model for Inverse Problems?

In general, for a function f : Rn → Rm

Mode Suitable for ... Complexity1 Application

Forward m� n ≤ 2.5 OPS(f (x)) UQ
Reverse m� n ≤ 4 OPS(f (x)) Inverse Modeling

There are also many other interesting topics

Mixed mode AD: many-to-many mappings.
Computing sparse Jacobian matrices using AD by exploiting sparse
structures.

Margossian CC. A review of automatic differentiation and its efficient implementation. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019 Jul;9(4):e1305.

1OPS is a metric for complexity in terms of fused-multiply adds.
ADCME ML for Computational Engineering 12 / 1

Computational Graph for Numerical Schemes

To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “AD language”: computational
graph.

No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.

S2

u ϕ

mt
Ψ2

ϕ(Sn+1
2 − Sn2) − ∇ ⋅ (m2(Sn+1

2)K ∇Ψn2) Δt = (qn2 + qn1
m2(Sn+12)
m1(Sn+12)) Δt

S2

u ϕ

mt
Ψ2

S2

u ϕ

mt
Ψ2

tn tn+1 tn+2

ADCME ML for Computational Engineering 13 / 1

ADCME: Computational-Graph-based Numerical
Simulation

ADCME ML for Computational Engineering 14 / 1

Parallel Computing

Parallel computing is essential for accelerating simulation and
satisfying demanding memory requirements.

ADCME ML for Computational Engineering 15 / 1

Distributed Optimization

ADCME also supports MPI-based distributed computing. The parallel
model is designed specially for scientific computing.

Key idea: Everything is an operator. Computation and
communications are converters of data streams (tensors) through the
computational graph.

mpi bcast, mpi sum, mpi send, mpi recv, mpi halo exchange, ...

ADCME ML for Computational Engineering 16 / 1

Granularity of Automatic Differentiation

Coarser granularity gives researchers more control over gradient
back-propagation.

ADCME ML for Computational Engineering 17 / 1

Outline

ADCME ML for Computational Engineering 18 / 1

Inverse Modeling of the Stokes Equation

The governing equation for the Stokes problem

−ν∆u +∇p = f in Ω

∇ · u = 0 in Ω

u = 0 on ∂Ω

The weak form is given by

(ν∇u,∇v)− (p,∇ · v) = (f , v)

(∇ · u, q) = 0

ADCME ML for Computational Engineering 19 / 1

Inverse Modeling of the Stokes Equation

nu = Variable(0.5)

K = nu*constant(compute fem laplace matrix(m, n, h))

B = constant(compute interaction matrix(m, n, h))

Z = [K -B'

-B spdiag(zeros(size(B,1)))]

Impose boundary conditions

bd = bcnode("all", m, n, h)

bd = [bd; bd .+ (m+1)*(n+1); ((1:m) .+ 2(m+1)*(n+1))]

Z, _ = fem impose Dirichlet boundary condition1(Z, bd, m, n, h)

Calculate the source term

F1 = eval f on gauss pts(f1func, m, n, h)

F2 = eval f on gauss pts(f2func, m, n, h)

F = compute fem source term(F1, F2, m, n, h)

rhs = [F;zeros(m*n)]

rhs[bd] .= 0.0

sol = Z\rhs
ADCME ML for Computational Engineering 20 / 1

Inverse Modeling of the Stokes Equation

The distinguished feature compared to traditional forward simulation
programs: the model output is differentiable with respect to model
parameters!

loss = sum((sol[idx] - observation[idx])^2)

g = gradients(loss, nu)

Optimization with a one-liner:

BFGS!(sess, loss)

ADCME ML for Computational Engineering 21 / 1

Outline

ADCME ML for Computational Engineering 22 / 1

Constitutive Modeling

ADCME ML for Computational Engineering 23 / 1

Governing Equations

σij ,j︸︷︷︸
stress

+ρ bi︸︷︷︸
external force

= ρ üi︸︷︷︸
velocity

εij︸︷︷︸
strain

=
1

2
(uj ,i + ui ,j)

(2)

Observable: external/body force bi , displacements ui (strains εij can
be computed from ui); density ρ is known.

Unobservable: stress σij .

Data-driven Constitutive Relations: modeling the strain-stress relation
using a neural network

stress =Mθ(strain, . . .) (3)

and the neural network is trained by coupling Eq. ?? and Eq. ??.

ADCME ML for Computational Engineering 24 / 1

Residual Learning using Full-field Data

Weak form of balance equations of linear momentum

Pi (θ) =

∫
V

ρüiδuidVt +

∫
V

σij(θ)︸ ︷︷ ︸
embedded neural network

δεijdV

Fi =

∫
V

ρbiδuidV +

∫
∂V

tiδuidS

Train the neural network by

L(θ) = min
θ

N∑
i=1

(Pi (θ) − Fi)
2

The gradient ∇L(θ) is computed via automatic differentiation.

ADCME ML for Computational Engineering 25 / 1

Representation of Constitutive Relations

Proper form of constitutive relation is crucial for numerical stability

Elasticity⇒ σ = Cθε

Hyperelasticity ⇒

{
σ =Mθ(ε) (Static)

σn+1 = Lθ(ε
n+1)Lθ(ε

n+1)T (εn+1 − εn) + σn (Dynamic)

Elaso-Plasticity⇒ σn+1 = Lθ(ε
n+1, εn,σn)Lθ(ε

n+1, εn,σn)T (εn+1 − εn) + σn

Lθ =

L1111

L2211 L2222

L3311 L3322 L3333

L2323

L1313

L1212

Weak convexity: LθLT

θ � 0

Time consistency: σn+1 → σn when εn+1 → εn

ADCME ML for Computational Engineering 26 / 1

Modeling Elasto-plasticity

Comparison of different neural network architectures

σn+1 = Lθ(εn+1, εn,σn)Lθ(εn+1, εn,σn)T (εn+1 − εn) + σn

σn+1 = NNθ(εn+1, εn,σn)

σn+1 = NNθ(εn+1, εn,σn) + σn

ADCME ML for Computational Engineering 27 / 1

Modeling Elasto-plasticity: Multi-scale

ADCME ML for Computational Engineering 28 / 1

Static Hyperelasticity Problem

Consider an axisymmetric Mooney-Rivlin hyperelastic incompressible
material with an energy density function

W (λ1, λ2, λ3) = µ(λ2
1 + λ2

2 + λ2
3 − 3) + α(λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 − 3)

J = λ1λ2λ3 = 1

The constitutive relations is modeled as

Nθ : (λ1, λ2)→ (P1,P2)

Here (P1,P2) is the stress tensor.

ADCME ML for Computational Engineering 29 / 1

Comparison with Traditional Basis Functions

ADCME ML for Computational Engineering 30 / 1

Learning Spatially-varying fields

Hyperelasticity: minimizing the neo-Hookean stored energy

min
u
ψ =

µ

2
(Ic − 2)− µ

2
log(J) +

λ

8
log(J)2

where

F = I +∇u, C = FTF , J = det(C), Ic = trace(C)

Lamé parameters

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

Deep Neural Network PDE Solver Observation

Loss Function

Spatially-varying
Physical Fields

Gradient Back-propagation

Forward Computation

ADCME ML for Computational Engineering 31 / 1

Learning Spatially-varying fields

DNN provides expressive data-driven models and regularization (e.g.,
spatial dependencies).

8.5

9.0

9.5

10.0

10.5

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

y

DNN

8.5

9.0

9.5

10.0

10.5

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

y

Error

0.001

0.002

0.003

0 2000 4000 6000 8000 10000
Iterations

10 4

10 2

100

102

104

106

Lo
ss

DNN
Discretization (Gauss Points)
Discretization (Piecewise Constant)

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

y

Discretization (Gauss Points)

8.5

9.0

9.5

10.0

10.5

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

y

Error

0.05

0.10

0.15

0.0 0.1 0.2 0.3 0.4 0.5
x

0.0

0.1

0.2

y

Discretization (Piecewise Constant)

8.5

9.0

9.5

10.0

10.5

0.0 0.1 0.2 0.3 0.4 0.5
x

0.0

0.1

0.2

y

Error

0.1

0.2

0.3

0.4

0.5

ADCME ML for Computational Engineering 32 / 1

Poroelasticity

Multi-physics Interaction of Coupled Geomechanics and Multi-Phase
Flow Equations

divσ(u)− b∇p = 0

1

M

∂p

∂t
+ b

∂εv (u)

∂t
−∇ ·

(
k

Bf µ
∇p
)

= f (x , t)

σ = σ(ε, ε̇)

Approximate the constitutive relation by a neural network

σn+1 = NN θ(σn, εn) + Hεn+1

Traction-free
∂u
∂n

= 0

No-flow
∂p
∂n

= 0

Fixed Pressure
p = 0

No-flow
∂p
∂n

= 0
No-flow
∂p
∂n

= 0 Injection Production

x

y

Finite Element
Finite Volume Cell

He1 He2

He3 He4

e

Sensors

ADCME ML for Computational Engineering 33 / 1

Poroelasticity

Comparison with space varying linear elasticity approximation

σ = H(x , y)ε

ADCME ML for Computational Engineering 34 / 1

Poroelasticity

ADCME ML for Computational Engineering 35 / 1

A Paradigm for Inverse Modeling

Most inverse modeling problems can be classified into 4 categories.
To be more concrete, consider the PDE for describing physics

∇ · (θ∇u(x)) = 0 BC(u(x)) = 0 (4)

We observe some quantities depending on the solution u and want to
estimate θ.

Expression Description ADCME Solution Note

∇ · (c∇u(x)) = 0 Parameter Inverse Problem
Discrete Adjoint

State Method
c is the minimizer of
the error functional

∇ · (f (x)∇u(x)) = 0 Function Inverse Problem
Neural Network

Functional Approximator
f (x) ≈ NNw (x)

∇ · (f (u)∇u(x)) = 0 Relation Inverse Problem
Residual Learning

Physics Constrained Learning (PCL)
f (u) ≈ NNw (u)

∇ · ($∇u(x)) = 0 Stochastic Inverse Problem
Physical Generative Neural Networks

(PhysGNN)
$ = NNw (vlatent)

ADCME ML for Computational Engineering 36 / 1

A General Approach to Inverse Modeling

ADCME ML for Computational Engineering 37 / 1

