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Inverse Modeling

@ Inverse modeling identifies a certain set of parameters or functions
with which the outputs of the forward analysis matches the desired
result or measurement.

@ Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.t
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Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

m@in Lh(uh) s.t. F;,(O, Uh) =0

@ The loss function L, measures the discrepancy between the prediction
up and the observation uops, €.g., Lp(up) = |lup — tobs|3-

@ 0 is the model parameter to be calibrated.

@ The physics constraints Fx(6, up) = 0 are described by a system of
partial differential equations. Solving for u, may require solving linear
systems or applying an iterative algorithm such as the
Newton-Raphson method.
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Function Inverse Problem

mfin Lp(up) st. Fp(f,up) =0

What if the unknown is a function instead of a set of parameters?
@ Koopman operator in dynamical systems.
o Constitutive relations in solid mechanics.
@ Turbulent closure relations in fluid mechanics.
o ...

The candidate solution space is infinite dimensional.
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Machine Learning for Computational Engineering

m@in Lh(Uh) s.t. Fh(NNg, uh) =0

@ Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.

@ Machine Learning for Computational Engineering: the unknown
function is approximated by a deep neural network, and the physical
constraints are enforced by numerical schemes.

@ Satisfy the physics to the largest extent.
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Gradient Based Optimization

moin Lp(up) st Fp(0,up) =0

@ We can now apply a gradient-based optimization method to (?7?).
@ The key is to calculate the gradient descent direction g
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Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

@ Deep learning (and many other machine learning techniques) and
numerical schemes share the same computational model: composition
of individual operators.

Mathematical Fact
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Automatic Differentiation: Forward-mode and
Reverse-mode
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What is the Appropriate Model for Inverse Problems?

@ In general, for a function f : R” — R"™

Mode Suitable for ... Complexity! Application
Forward m > n <250PS(f(x)) UQ
Reverse m<n < 4 OPS(f(x) Inverse Modeling

@ There are also many other interesting topics
o Mixed mode AD: many-to-many mappings.
e Computing sparse Jacobian matrices using AD by exploiting sparse
structures.
Margossian CC. A review of automatic differentiation and its efficient implementation. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019 Jul;9(4):e1305.

LOPS is a metric for complexity in terms of fused-multiply adds.
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Computational Graph for Numerical Schemes

@ To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “AD language”: computational
graph.

@ No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.
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ADCME: Computational-Graph-based Numerical
Simulation

ADCME
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Parallel Computing

@ Parallel computing is essential for accelerating simulation and
satisfying demanding memory requirements.
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Distributed Optimization

o ADCME also supports MPIl-based distributed computing. The parallel
model is designed specially for scientific computing.
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@ Key idea: Everything is an operator. Computation and
communications are converters of data streams (tensors) through the

computational graph.

mpi_bcast, mpi_sum, mpi_send, mpi_recv, mpi_halo_exchange, ...
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Granularity of Automatic Differentiation

@ Coarser granularity gives researchers more control over gradient
back-propagation.
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Inverse Modeling of the Stokes Equation

@ The governing equation for the Stokes problem

—vAu+Vp=f in Q
V-u=0 in Q
u=0 on 90

@ The weak form is given by

(vVu,Vv)—(p,V-v) =(f,v)
(V uaq) =0

19/1
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Inverse Modeling of the Stokes Equation

K = nu*xconstant (compute_fem laplace matrix(m, n, h))
B = constant(compute_interactionmatrix(m, n, h))

Z = [K -B'

-B spdiag(zeros(size(B,1)))]

# Impose boundary conditions

bd = bcnode("all", m, n, h)

bd [bd; bd .+ (m+1)*(n+1); ((1:m) .+ 2(m+1)*x(n+1))]

Z, _ = fem_impose Dirichlet _boundary_conditionl1(Z, bd, m, n, h)

# Calculate the source term

F1 = eval_f_on gauss_pts(fifunc, m, n, h)

F2 = eval_f_on_gauss_pts(f2func, m, n, h)

F = compute_fem _source _term(F1, F2, m, n, h)
rhs = [F;zeros(m*n)]

rhs[bd] .= 0.0

sol = Z\rhs
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Inverse Modeling of the Stokes Equation

@ The distinguished feature compared to traditional forward simulation
programs: the model output is differentiable with respect to model
parameters!

loss = sum((sol[idx] - observation[idx]) "2)
g = gradients(loss, nu)

@ Optimization with a one-liner:
BFGS! (sess, loss)

ADCME/AdFem Simulation Program
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Constitutive Modeling
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Governing Equations

ogijj +p b; =p U
stress  external force velocity

1 (2)
ej = (Uit uij)
v 2
strain
o Observable: external/body force b;, displacements u; (strains ¢;; can
be computed from v;); density p is known.
@ Unobservable: stress o;.

@ Data-driven Constitutive Relations: modeling the strain-stress relation
using a neural network

stress = My(strain, .. .) ‘ (3)

and the neural network is trained by coupling Eq. ?? and Eq. ?7.
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Residual Learning using Full-field Data

@ Weak form of balance equations of linear momentum

Pi(0) = / piiduidVi + / 0;(0)d25dV
embedded neural network

F; _/pb6u,dV+/ tidu;dS
oV

@ Train the neural network by

N
L(6) = min > (Pi(o) -
i=1

The gradient VL(6) is computed via automatic differentiation
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Representation of Constitutive Relations

@ Proper form of constitutive relation is crucial for numerical stability

Elasticity = o = Cye

o = My(e) (Static)
o™ = Le(e")Lo(e") (" — €") + " (Dynamic)

Elaso-Plasticity = 0" = Lo(e"™',€", 0" )Lo(e", €",6") (" — €") + &

Hyperelasticity = {

Ly
Lo Loz
Lo — L3311 L33z Lszs3
L2323
Lis13

L1z
@ Weak convexity: LeLg >0

o Time consistency: "t — " when €™ — €”
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Modeling Elasto-plasticity

@ Comparison of different neural network architectures

o
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Modeling Elasto-plasticity: Multi-scale
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Static Hyperelasticity Problem
@ Consider an axisymmetric Mooney-Rivlin hyperelastic incompressible
material with an energy density function
W(AL, X2, A3) = p(AF + A3 + A3 = 3) + a(ATA3 + A3A3 + A3M] - 3)
J=MMA3=1
@ The constitutive relations is modeled as
Ny (A1, \2) = (P1, P2)

Here (P, Py) is the stress tensor.
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Comparison with Traditional Basis Functions
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Learning Spatially-varying fields
@ Hyperelasticity: minimizing the neo-Hookean stored energy

muin¢ = %(IC —2) — g log(J) + % log(J)?

where
F=1+Vu, C=FTF, J=det(C), I. = trace(C)
@ Lamé parameters
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Learning Spatially-varying fields

DNN provides expressive data-driven models and regularization (e.g.,

spatial dependencies).
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Poroelasticity

@ Multi-physics Interaction of Coupled Geomechanics and Multi-Phase

Flow Equations
dive(u) — bVp =0
1 0p Oe, (u) B
Vst V- (Bf Vp) = f(x, 1)

o =o(eé€)

@ Approximate the constitutive relation by a neural network
"= NNg(o", €") + He
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Poroelasticity

@ Comparison with space varying linear elasticity approximation

0.150

0125

0100

0.050

0.025

0.000

Space Varying
Linear Elasticity

ADCME

9 >0.50 ’Q

o =H(x,y)e

0150
0125
0100
0075
0050

0.025

X 0.000

NN

ML for Computational Engineering

0150

0125

0.100

0.075

0.050

0.025

0.000

34/1



Poroelasticity
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A Paradigm for Inverse Modeling

@ Most inverse modeling problems can be classified into 4 categories.
To be more concrete, consider the PDE for describing physics

V- (0Vu(x)) =0 BC(u(x))=0

(4)

We observe some quantities depending on the solution v and want to

ADCME Solution

Note

estimate 0.
Expression Description
V - (cVu(x)) =0 Parameter Inverse Problem

Discrete Adjoint
State Method

c is the minimizer of
the error functional

V - (f(x)Vu(x)) =0 Function Inverse Problem

Neural Network
Functional Approximator

f(x) = NN w(x)

V - (f(u)Vu(x)) =0 Relation Inverse Problem

Residual Learning
Physics Constrained Learning (PCL)

Fu) = NN w(u)

V - (@wVu(x)) =0 Stochastic Inverse Problem

Physical Generative Neural Networks
(PhysGNN)

@ = NNw(Vatent)
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A General Approach to Inverse Modeling

SRl N

i / AdFem.jl
ADCME ‘ ‘.\ Finite Element Library
: -0 H for Inverse Modeling
/y; _________ https //github.com/kailaix/AdFem jl

FwiFlow.jl ’ H

Multiphase Flow .J
Nonlocal Operators M ;
https://github.com/lidongzh/FwiFlow jl " NNFEM'II

Constitutive Law Modeling
ADSeismic.jl Hyperelasticity
General Seismic Inversion Elasto-Plasticity

https://github.com/kailaix/ADSeismic.jl https://github.com/kailaix/NNFEM jl
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