Machine Learning for Inverse Problems in
Computational Engineering

Kailai Xu and Eric Darve
https://github.com/kailaix/ADCME. j1

ADCME ML for Computational Engineering 1/1

https://github.com/kailaix/ADCME.jl

Outline

DCME

ML for Computational Engineering

2/1

Inverse Modeling

Forward Problem

Model
Parameters

— | Physical Laws | —>

Inverse Problem

Observations

— (Physical Laws | —>

ADCME ML for Computational Engineering

Prediction
of
Observations

Estimation
of
Parameters

3/1

Inverse Modeling

@ Inverse modeling identifies a certain set of parameters or functions
with which the outputs of the forward analysis matches the desired
result or measurement.

@ Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.t

Physical W - [Optimal Control

Properties — —~—

W

=045+ pfi
Physical Dy s o [Discover Physics

Predictive Modeling J

Laws i i+ i)

Predictions AN S
(Observations) %)

Reduced Order Modeling]

7N

ADCME ML for Computational Engineering 4/1

Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

m@in Lh(uh) s.t. F;,(O, Uh) =0

@ The loss function L, measures the discrepancy between the prediction
up and the observation uops, €.g., Lp(up) = |lup — tobs|3-

@ 0 is the model parameter to be calibrated.

@ The physics constraints Fx(6, up) = 0 are described by a system of
partial differential equations. Solving for u, may require solving linear
systems or applying an iterative algorithm such as the
Newton-Raphson method.

ADCME ML for Computational Engineering 5/1

Function Inverse Problem

mfin Lp(up) st. Fp(f,up) =0

What if the unknown is a function instead of a set of parameters?
@ Koopman operator in dynamical systems.
o Constitutive relations in solid mechanics.
@ Turbulent closure relations in fluid mechanics.
o ...

The candidate solution space is infinite dimensional.

ADCME ML for Computational Engineering

6/1

Machine Learning for Computational Engineering

m@in Lh(Uh) s.t. Fh(NNg, uh) =0

@ Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.

@ Machine Learning for Computational Engineering: the unknown
function is approximated by a deep neural network, and the physical
constraints are enforced by numerical schemes.

@ Satisfy the physics to the largest extent.

Data

O

First Principles Numerical Schemes

— — U:"—‘l ;;“:" - .

— 2,
Wy = CTUy

Inverse Modeling Neural Networks

ADCME ML for Computational Engineering 7/1

Gradient Based Optimization

moin Lp(up) st Fp(0,up) =0

@ We can now apply a gradient-based optimization method to (?7?).
@ The key is to calculate the gradient descent direction g

Update
Model Parameters)

Calculate
Gradients

>

x

+

—| & [=
llT
i =

()"

Predicted
Data

Loss Function —— Calibrated Model
< tol?

\
:

Data

)\

Observed]

Initial and

Boundary Conditions

ADCME ML for Computational Engineering

(1)

8/1

Outline

DCME

ML for Computational Engineering

9/1

Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

@ Deep learning (and many other machine learning techniques) and
numerical schemes share the same computational model: composition
of individual operators.

Mathematical Fact

Back-propagation

e . Optimizer
Reverse-mode { eryses umarca Oportons |
Automatic Differentiation | '

: ! v
<k <o <o P
Parameter —b — — —_ «—>» |Observation|
—— Forward calculation

Discrete | ,
Adjoint-State Method L= H = [St guoans

ADCME ML for Computational Engineering 10/1

Automatic Differentiation: Forward-mode and
Reverse-mode

Loss

Intermediate

Values I:>

Inputs

Reverse Mode Automatic Differentiation

£ i B

Forward Mode Automatic Differentiation

ADCME ML for Computational Engineering 11/1

What is the Appropriate Model for Inverse Problems?

@ In general, for a function f : R” — R"™

Mode Suitable for ... Complexity! Application
Forward m > n <250PS(f(x)) UQ
Reverse m<n < 4 OPS(f(x) Inverse Modeling

@ There are also many other interesting topics
o Mixed mode AD: many-to-many mappings.
e Computing sparse Jacobian matrices using AD by exploiting sparse
structures.
Margossian CC. A review of automatic differentiation and its efficient implementation. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019 Jul;9(4):e1305.

LOPS is a metric for complexity in terms of fused-multiply adds.

ADCME ML for Computational Engineering 12/1

Computational Graph for Numerical Schemes

@ To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “AD language”: computational
graph.

@ No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.

i+ _ g . . (85
[¢<s:*‘—52)—v'(mz(Sz*UKV‘l‘z) <q s) A

R

4 ¢ ¢

—

—= /owzo\ _Ow; o\ 0 -0w0

t

tn tn+1 tn+2

ADCME ML for Computational Engineering 13/1

ADCME: Computational-Graph-based Numerical
Simulation

ADCME
Computational Graph

Custom Optimizers Output Custom Operators
CustomOptimizer H customop()
BFGS cuon &

Gradient .-
Ipopt Fortran Kernel -
pop =

NLopt Checkpointing

MUMPS Parallel Solver

- 2
W/

... Input

OOOOOO

—} Numerical PDE Schemes, Linear Solvers, Arithmetic Operations, Optimization Solvers, Neural Networks, ...

DCME ML for Computational Engineering 14 /1

Parallel Computing

@ Parallel computing is essential for accelerating simulation and
satisfying demanding memory requirements.

‘_E

Modelparallism

i

29099

*

Machine 3|

Oata paralielsm

Deep Learning Data/Model Parallelism

ADCME

et
&
o]
o
o
o

i
t

Aggregate Gradient

it

§

§688 8800

88868

\
1
1
1
1
!

N

\
\
\

7 i
/ !
|

/
(e} (G

it
G

- Workioad partioning

E——

(1}

Broadcast
27 1t R
(o] (Govont] [come)
Com J{ Jw)
= = >

mP MPL [

B @ EE

it
Ce) G (o)

_. Wz

4= Data Exchange

Scientific Computing Mixed Parallelism

ML for Computational Engineering

15/1

Distributed Optimization

o ADCME also supports MPIl-based distributed computing. The parallel
model is designed specially for scientific computing.

Comput ompute
. o Computational Graph m S Ehrs Computational Graph
O i on Processor 0 e on Processor 0
Last Time tep \‘snavajau. e s e
Next Time Step e Next Time Step
A DT A Dot
i i
— | i i
I 1
1 Compute
Comput
! conpue Computational Graph &= Computational Graph
Coeficents Facamets on Processor 1
—— on Processor 1 update
! somvatle ! s
v ~

Next Time Step Data Transter

Data Transter

@ Key idea: Everything is an operator. Computation and
communications are converters of data streams (tensors) through the

computational graph.

mpi_bcast, mpi_sum, mpi_send, mpi_recv, mpi_halo_exchange, ...

ADCME ML for Computational Engineering 16/1

Granularity of Automatic Differentiation

@ Coarser granularity gives researchers more control over gradient
back-propagation.

Operator

z=x*y

z=x+y

y = compute_fem
Granularity Arithmetic

stiffness_matrix(x, mesh)
Tensor
TAPENADE

Simulation
(¢} PyTorch \
MeDiPack
Adept

OpenVFOAM
CoDiPack

% dolfin- ad|omt

m]

&
ML for Computational Engineering

17/1

Outline

DCME ML for Computational Engineering 18/1

Inverse Modeling of the Stokes Equation

@ The governing equation for the Stokes problem

—vAu+Vp=f in Q
V-u=0 in Q
u=0 on 90

@ The weak form is given by

(vVu,Vv)—(p,V-v) =(f,v)
(V uaq) =0

19/1

ADCME ML for Computational Engineering

Inverse Modeling of the Stokes Equation

K = nu*xconstant (compute_fem laplace matrix(m, n, h))
B = constant(compute_interactionmatrix(m, n, h))

Z = [K -B'

-B spdiag(zeros(size(B,1)))]

Impose boundary conditions

bd = bcnode("all", m, n, h)

bd [bd; bd .+ (m+1)*(n+1); ((1:m) .+ 2(m+1)*x(n+1))]

Z, _ = fem_impose Dirichlet _boundary_conditionl1(Z, bd, m, n, h)

Calculate the source term

F1 = eval_f_on gauss_pts(fifunc, m, n, h)

F2 = eval_f_on_gauss_pts(f2func, m, n, h)

F = compute_fem _source _term(F1, F2, m, n, h)
rhs = [F;zeros(m*n)]

rhs[bd] .= 0.0

sol = Z\rhs
ADCME ML for Computational Engineering 20/1

Inverse Modeling of the Stokes Equation

@ The distinguished feature compared to traditional forward simulation
programs: the model output is differentiable with respect to model
parameters!

loss = sum((sol[idx] - observation[idx]) "2)
g = gradients(loss, nu)

@ Optimization with a one-liner:
BFGS! (sess, loss)

ADCME/AdFem Simulation Program

ADCME ML for Computational Engineering 21/1

Outline

DCME ML for Computational Engineering 22/1

Constitutive Modeling

Civil Engineering

N /é“'\m‘“
. ~ g
Constntgt/i\{éﬁﬁ‘flggﬁmgﬁ ol
eV X /Q' g 00
s g
i
“ 2004

0000 0.006 000 0015 0020
Strain

Aeronautics & Astronautics

Theoretical Mechanics

Geomechanics

ADCME ML for Computational Engineering 23/1

Governing Equations

ogijj +p b; =p U
stress external force velocity

1 (2)
ej = (Uit uij)
v 2
strain
o Observable: external/body force b;, displacements u; (strains ¢;; can
be computed from v;); density p is known.
@ Unobservable: stress o;.

@ Data-driven Constitutive Relations: modeling the strain-stress relation
using a neural network

stress = My(strain, .. .) ‘ (3)

and the neural network is trained by coupling Eq. ?? and Eq. ?7.

ADCME ML for Computational Engineering 24 /1

Residual Learning using Full-field Data

@ Weak form of balance equations of linear momentum

Pi(0) = / piiduidVi + / 0;(0)d25dV
embedded neural network

F; _/pb6u,dV+/ tidu;dS
oV

@ Train the neural network by

N
L(6) = min > (Pi(o) -
i=1

The gradient VL(6) is computed via automatic differentiation

[,/ 1 [,/ £i+[
A A A
fi=l B SEEE TR f! B TEE TR ' fitl e — \
_______ po - N :
' = b = I - :
| s ! 1 ! 1 !
Ppr=Reg | pemuey ' peraaay) T
o ' o il o ' o
. :
.
! -2 Zi—-1 .. 67‘—[e e € E/+l

25/1

Representation of Constitutive Relations

@ Proper form of constitutive relation is crucial for numerical stability

Elasticity = o = Cye

o = My(e) (Static)
o™ = Le(e")Lo(e") (" — €") + " (Dynamic)

Elaso-Plasticity = 0" = Lo(e"™',€", 0")Lo(e", €",6") (" — €") + &

Hyperelasticity = {

Ly
Lo Loz
Lo — L3311 L33z Lszs3
L2323
Lis13

L1z
@ Weak convexity: LeLg >0

o Time consistency: "t — " when €™ — €”

ADCME ML for Computational Engineering 26/1

Modeling Elasto-plasticity

@ Comparison of different neural network architectures

o

n+1

o

n+1

o

= NNg(e™,€",0") + o

n+l _ Lg(€n+1,6",Un)Lg(GnJrl,En,O'n)T(E"Jrl .

= NNg(e"t1, e, o)

en) + O_n

plastic deformation elastic unloading
0.06 A\ a 0.06 0.06 —
¥
0.05 H 0.05 1
. >}
2 004 0.04 -
2 0034 0.03 4 16
g 002l O Reference 0024 O Reference o O Reference
& -layer CholNN --- 1-layer NN1 : - 1
2 o1d CholNN 0.014 ayer NN1 o
CholNN === 3-layer NN1
0.00 4 CholNN 0.00 4 === 4-layer NN1 0.00 4
0.00 ‘ 005 010 015 020 0.00 010 015 020 000 005 010 015 020
Time (s) Time (s) Time (s)

elastic deformation

ADCME

ML for Computational Engineering

27 /1

Modeling Elasto-plasticity: Multi-scale

175
150
125
1.00
0.75
0.50
0.25

X {cm)

SPD-NN

X (cm)

Fiber Reinforced Thin Plate
Reference von Mises stress

28/1

ML for Computational Engineering

ADCME

Static Hyperelasticity Problem
@ Consider an axisymmetric Mooney-Rivlin hyperelastic incompressible
material with an energy density function
W(AL, X2, A3) = p(AF + A3 + A3 = 3) + a(ATA3 + A3A3 + A3M] - 3)
J=MMA3=1
@ The constitutive relations is modeled as
Ny (A1, \2) = (P1, P2)

Here (P, Py) is the stress tensor.

7 AN
@ R A D
, : { .
! a1 8V AN\ "-.4_‘
N\ VAT T VNN
i, % /’tl =
Rubber Membrane (A4, A7) Distribution

ADCME ML for Computational Engineering 29/1

Comparison with Traditional Basis Functions

+ Calibrated « Calibrated
Reference

Reference

Piecewise Linear Neural Network

1
-« RBFN-100, training
—— RBFN-100, test
- -~ RBFN-400, training
~—— RBFN-400, test

RBF-0.1, training |
RBF-0.1, test 10
RBF-0.4, training

10!

L L e

107! 107"
102 107?

0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14

Iteration 10 Tterations 10

Radial Basis Functions Radial Basis Function Networks
VS. vS.
Neural Network Neural Network

ADCME ML for Computational Engineering 30/1

Learning Spatially-varying fields
@ Hyperelasticity: minimizing the neo-Hookean stored energy

muin¢ = %(IC —2) — g log(J) + % log(J)?

where
F=1+Vu, C=FTF, J=det(C), I. = trace(C)
@ Lamé parameters

- Ev B E
TQrr)a-2) T 20+

A

== Gradient Back-propagation

) Forward Computation Loss Function
Spatially-varying
Physical Fields

[Deep Neural Network]S{ PDE Solver]s[Observation

ADCME ML for Computational Engineering 31/1

Learning Spatially-varying fields

DNN provides expressive data-driven models and regularization (e.g.,

spatial dependencies).

105 105
Exact
100 0.003
o5 0.002
9.0
0.001
04 85
105
Discretization (Gauss Points)
= 100
02 il 015
4 95
>0 g 0.10
9.0
0.05
0.0
00 01 02 03 04 85
G 2000 4000 6000 8000 10000
Iterations
105
— DN 100 Error 05
Discretization (Gauss Points) 04
—— Discretization (Piecewise Constant) 95
03
9.0 02
85 01

ML for Computational Engineering

32/1

Poroelasticity

@ Multi-physics Interaction of Coupled Geomechanics and Multi-Phase

Flow Equations
dive(u) — bVp =0
1 0p Oe, (u) B
Vst V- (Bf Vp) = f(x, 1)

o =o(eé€)

@ Approximate the constitutive relation by a neural network
"= NNg(o", €") + He

Fixed Pressure Sensors
13 ®
T fi N No-fl
raction-free \ o flow o-flow y
a_y o A =
on m =0 D> In]ectlon Production | on B | | !
\/ No-flow '
> _q Finite Element
on Finite Volume Cell
ADCME ML for Computational Engineering

33/1

Poroelasticity

@ Comparison with space varying linear elasticity approximation

0.150

0125

0100

0.050

0.025

0.000

Space Varying
Linear Elasticity

ADCME

9 >0.50 ’Q

o =H(x,y)e

0150
0125
0100
0075
0050

0.025

X 0.000

NN

ML for Computational Engineering

0150

0125

0.100

0.075

0.050

0.025

0.000

34/1

Poroelasticity

102
000000000000
2
2
_ 0
E
g o
5 -2 g
2 1
Z oy,
¥y u'av
-6 OTsrgo-F- L o ©
° 09,20920000009280%,...-.-°
s o ° o
0 02 04 06 08 1 0 02 04 06 08 1
Time Time
(a) Space Varying Linear Elasticity
0000000 25
00000
2 0o®
2 2
z 0 N
E I 4
22 . 2 1 ¢
a . s
4 o, 05| §
. K
-6 “Pevs0s0so 0 eovsysasavavavsveven
0 02 04 06 08 1 0 02 04 06 08 1
Time Time
(b) NN-based Viscoelasticity

ADCME ML for Computational Engineering 35/1

A Paradigm for Inverse Modeling

@ Most inverse modeling problems can be classified into 4 categories.
To be more concrete, consider the PDE for describing physics

V- (0Vu(x)) =0 BC(u(x))=0

(4)

We observe some quantities depending on the solution v and want to

ADCME Solution

Note

estimate 0.
Expression Description
V - (cVu(x)) =0 Parameter Inverse Problem

Discrete Adjoint
State Method

c is the minimizer of
the error functional

V - (f(x)Vu(x)) =0 Function Inverse Problem

Neural Network
Functional Approximator

f(x) = NN w(x)

V - (f(u)Vu(x)) =0 Relation Inverse Problem

Residual Learning
Physics Constrained Learning (PCL)

Fu) = NN w(u)

V - (@wVu(x)) =0 Stochastic Inverse Problem

Physical Generative Neural Networks
(PhysGNN)

@ = NNw(Vatent)

ADCME ML for Computational Engineering

36/1

A General Approach to Inverse Modeling

SRl N

i / AdFem.jl
ADCME ‘ ‘.\ Finite Element Library
: -0 H for Inverse Modeling
/y; _________ https //github.com/kailaix/AdFem jl

FwiFlow.jl ’ H

Multiphase Flow .J
Nonlocal Operators M ;
https://github.com/lidongzh/FwiFlow jl " NNFEM'II

Constitutive Law Modeling
ADSeismic.jl Hyperelasticity
General Seismic Inversion Elasto-Plasticity

https://github.com/kailaix/ADSeismic.jl https://github.com/kailaix/NNFEM jl

ADCME ML for Computational Engineering 37/1

