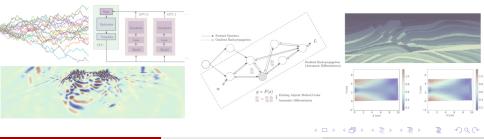
Machine Learning for Inverse Problems in Computational Engineering

Kailai Xu and Eric Darve https://github.com/kailaix/ADCME.jl

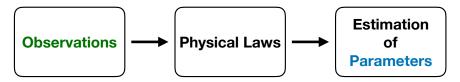


Outline

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Forward Problem

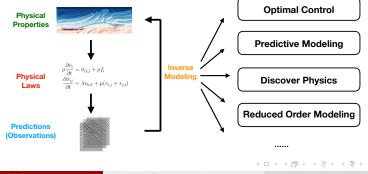
Inverse Problem



э

Inverse Modeling

- **Inverse modeling** identifies a certain set of parameters or functions with which the outputs of the forward analysis matches the desired result or measurement.
- Many real life engineering problems can be formulated as inverse modeling problems: shape optimization for improving the performance of structures, optimal control of fluid dynamic systems, etc.t



We can formulate inverse modeling as a PDE-constrained optimization problem

$$\min_{\theta} L_h(u_h) \quad \text{s.t. } F_h(\theta, u_h) = 0$$

- The loss function L_h measures the discrepancy between the prediction u_h and the observation u_{obs} , e.g., $L_h(u_h) = ||u_h u_{obs}||_2^2$.
- θ is the model parameter to be calibrated.
- The physics constraints $F_h(\theta, u_h) = 0$ are described by a system of partial differential equations. Solving for u_h may require solving linear systems or applying an iterative algorithm such as the Newton-Raphson method.

<ロト <部ト <注入 < 注入 = 二 =

$$\min_{\mathbf{f}} L_h(u_h) \quad \text{s.t. } F_h(\mathbf{f}, u_h) = 0$$

What if the unknown is a function instead of a set of parameters?

- Koopman operator in dynamical systems.
- Constitutive relations in solid mechanics.
- Turbulent closure relations in fluid mechanics.

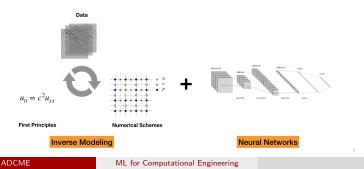
• ...

The candidate solution space is infinite dimensional.

Machine Learning for Computational Engineering

 $\min_{a} L_h(u_h) \quad \text{s.t. } F_h(NN_{\theta}, u_h) = 0$

- Deep neural networks exhibit capability of approximating high dimensional and complicated functions.
- Machine Learning for Computational Engineering: the unknown function is approximated by a deep neural network, and the physical constraints are enforced by numerical schemes.
- Satisfy the physics to the largest extent.

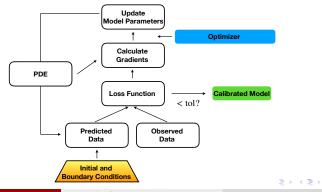


Gradient Based Optimization

$$\min_{\theta} L_h(u_h) \quad \text{s.t. } F_h(\theta, u_h) = 0 \tag{1}$$

- We can now apply a gradient-based optimization method to (??).
- The key is to calculate the gradient descent direction g^k

$$\theta^{k+1} \leftarrow \theta^k - \alpha g^k$$



ADCME

э

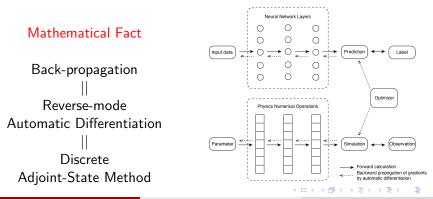
Outline

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

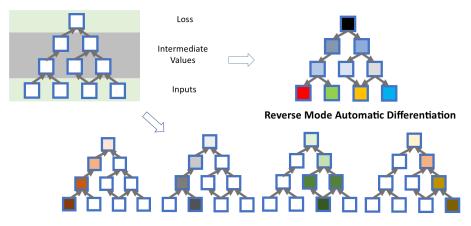
Automatic Differentiation

The fact that bridges the technical gap between machine learning and inverse modeling:

 Deep learning (and many other machine learning techniques) and numerical schemes share the same computational model: composition of individual operators.



Automatic Differentiation: Forward-mode and Reverse-mode



Forward Mode Automatic Differentiation

イロト イポト イヨト イヨト

э

What is the Appropriate Model for Inverse Problems?

٩	In	general,	for	а	function	f	:	\mathbb{R}^{n}	\rightarrow	\mathbb{R}^{m}
---	----	----------	-----	---	----------	---	---	------------------	---------------	------------------

Mode	Suitable for	$Complexity^1$	Application
Forward	$m \gg n$	$\leq 2.5 \operatorname{OPS}(f(x))$	UQ
Reverse	$m \ll n$	$\leq 4 \operatorname{OPS}(f(x))$	Inverse Modeling

• There are also many other interesting topics

- Mixed mode AD: many-to-many mappings.
- Computing sparse Jacobian matrices using AD by exploiting sparse structures.

Margossian CC. A review of automatic differentiation and its efficient implementation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019 Jul;9(4):e1305.

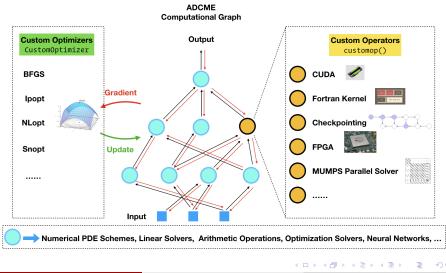
 ^{1}OPS is a metric for complexity in terms of fused-multiply adds. (\equiv) (\equiv) (\equiv) (\equiv) (\sim)

Computational Graph for Numerical Schemes

- To leverage automatic differentiation for inverse modeling, we need to express the numerical schemes in the "AD language": computational graph.
- No matter how complicated a numerical scheme is, it can be decomposed into a collection of operators that are interlinked via state variable dependencies.

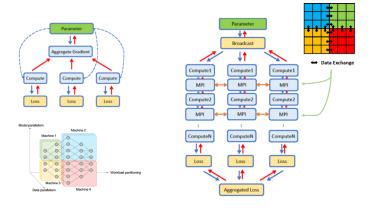
▲ □ ▶ ▲ □ ▶ ▲ □ ▶

ADCME: Computational-Graph-based Numerical Simulation



Parallel Computing

• Parallel computing is essential for accelerating simulation and satisfying demanding memory requirements.



Deep Learning Data/Model Parallelism

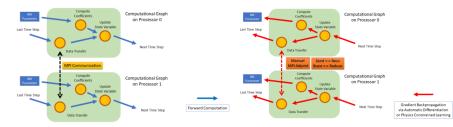
Scientific Computing Mixed Parallelism

イロト 不得 トイヨト イヨト

э

Distributed Optimization

• ADCME also supports MPI-based distributed computing. The parallel model is designed specially for scientific computing.



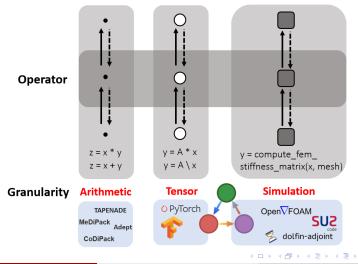
• Key idea: Everything is an operator. Computation and communications are converters of data streams (tensors) through the computational graph.

mpi_bcast, mpi_sum, mpi_send, mpi_recv, mpi_halo_exchange, ...

< □ > < □ > < □ > < □ > < □ > < □ >

Granularity of Automatic Differentiation

• Coarser granularity gives researchers more control over gradient back-propagation.



Outline

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

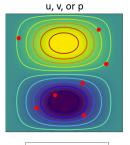
Inverse Modeling of the Stokes Equation

• The governing equation for the Stokes problem

$$-\nu\Delta u + \nabla p = f$$
 in Ω

$$\nabla \cdot \mathbf{u} = 0$$
 in Ω

$$u=0 \quad \text{ on } \partial \Omega$$



• The weak form is given by

$$\begin{aligned} (\nu \nabla u, \nabla v) - (p, \nabla \cdot v) &= (f, v) \\ (\nabla \cdot u, q) &= 0 \end{aligned}$$

Observations

Inverse Modeling of the Stokes Equation

nu = Variable(0.5)

- K = nu*constant(compute_fem_laplace_matrix(m, n, h))
- B = constant(compute_interaction_matrix(m, n, h))
- Z = [K -B']
- -B spdiag(zeros(size(B,1)))]

Impose boundary conditions

- bd = bcnode("all", m, n, h)
- bd = [bd; bd .+ (m+1)*(n+1); ((1:m) .+ 2(m+1)*(n+1))]
- Z, _ = fem_impose_Dirichlet_boundary_condition1(Z, bd, m, n, h)

Calculate the source term

$$F1 = eval_f_on_gauss_pts(f1func, m, n, h)$$

$$F2 = eval_f_on_gauss_pts(f2func, m, n, h)$$

$$F = compute_fem_source_term(F1, F2, m, n, h)$$

$$rhs = [F; zeros(m*n)]$$

$$rhs[bd] = 0.0$$

 $sol = Z \ rhs$

(本語) ト (本語) ト (本語) ト

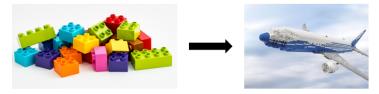
Inverse Modeling of the Stokes Equation

• The distinguished feature compared to traditional forward simulation programs: the model output is differentiable with respect to model parameters!

```
loss = sum((sol[idx] - observation[idx])^2)
g = gradients(loss, nu)
```

• Optimization with a one-liner:

BFGS!(sess, loss)



ADCME/AdFem

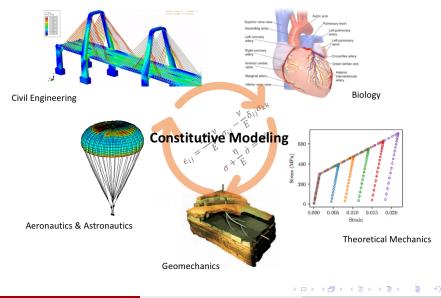
Simulation Program

- 4 回 ト 4 三 ト 4 三 ト

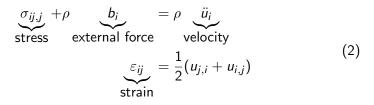
Outline

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Constitutive Modeling



Governing Equations



- Observable: external/body force b_i, displacements u_i (strains ε_{ij} can be computed from u_i); density ρ is known.
- Unobservable: stress σ_{ij} .
- Data-driven Constitutive Relations: modeling the strain-stress relation using a neural network

stress =
$$\mathcal{M}_{\theta}(\text{strain}, \ldots)$$
 (3)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

and the neural network is trained by coupling Eq. ?? and Eq. ??.

Residual Learning using Full-field Data

• Weak form of balance equations of linear momentum

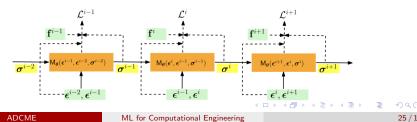
$$P_{i}(\theta) = \int_{V} \rho \ddot{u}_{i} \delta u_{i} dV t + \int_{V} \underbrace{\sigma_{ij}(\theta)}_{\text{embedded neural network}} \delta \varepsilon_{ij} dV$$

$$F_i = \int_V \rho b_i \delta u_i dV + \int_{\partial V} t_i \delta u_i dS$$

• Train the neural network by

$$L(\theta) = \min_{\theta} \sum_{i=1}^{N} (P_i(\theta) - F_i)^2$$

The gradient $\nabla L(\theta)$ is computed via automatic differentiation.



Representation of Constitutive Relations

• Proper form of constitutive relation is crucial for numerical stability

$$\begin{split} & \mathsf{Elasticity} \Rightarrow \boldsymbol{\sigma} = \mathsf{C}_{\boldsymbol{\theta}} \boldsymbol{\epsilon} \\ & \mathsf{Hyperelasticity} \ \Rightarrow \begin{cases} \boldsymbol{\sigma} = \mathcal{M}_{\boldsymbol{\theta}}(\boldsymbol{\epsilon}) & (\mathsf{Static}) \\ \boldsymbol{\sigma}^{n+1} = \mathsf{L}_{\boldsymbol{\theta}}(\boldsymbol{\epsilon}^{n+1}) \mathsf{L}_{\boldsymbol{\theta}}(\boldsymbol{\epsilon}^{n+1})^T (\boldsymbol{\epsilon}^{n+1} - \boldsymbol{\epsilon}^n) + \boldsymbol{\sigma}^n & (\mathsf{Dynamic}) \end{cases} \\ & \mathsf{Elaso-Plasticity} \Rightarrow \boldsymbol{\sigma}^{n+1} = \mathsf{L}_{\boldsymbol{\theta}}(\boldsymbol{\epsilon}^{n+1}, \boldsymbol{\epsilon}^n, \boldsymbol{\sigma}^n) \mathsf{L}_{\boldsymbol{\theta}}(\boldsymbol{\epsilon}^{n+1}, \boldsymbol{\epsilon}^n, \boldsymbol{\sigma}^n)^T (\boldsymbol{\epsilon}^{n+1} - \boldsymbol{\epsilon}^n) + \boldsymbol{\sigma}^n \end{split}$$

$$\mathsf{L}_{\boldsymbol{\theta}} = \begin{bmatrix} L_{1111} & & & \\ L_{2211} & L_{2222} & & & \\ L_{3311} & L_{3322} & L_{3333} & & \\ & & & L_{2323} & & \\ & & & & L_{1313} & \\ & & & & & L_{1212} \end{bmatrix}$$

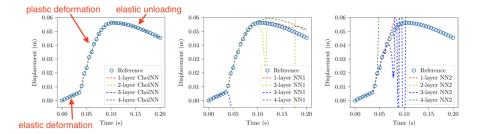
- Weak convexity: $L_{\theta}L_{\theta}^{T} \succ 0$
- Time consistency: $\sigma^{n+1} o \sigma^n$ when $\epsilon^{n+1} o \epsilon^n$

・ロト ・ 同ト ・ ヨト ・ ヨト

Modeling Elasto-plasticity

• Comparison of different neural network architectures

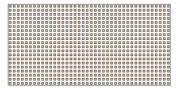
$$\sigma^{n+1} = \mathsf{L}_{\theta}(\epsilon^{n+1}, \epsilon^{n}, \sigma^{n}) \mathsf{L}_{\theta}(\epsilon^{n+1}, \epsilon^{n}, \sigma^{n})^{\mathsf{T}}(\epsilon^{n+1} - \epsilon^{n}) + \sigma^{n}$$
$$\sigma^{n+1} = \mathsf{NN}_{\theta}(\epsilon^{n+1}, \epsilon^{n}, \sigma^{n})$$
$$\sigma^{n+1} = \mathsf{NN}_{\theta}(\epsilon^{n+1}, \epsilon^{n}, \sigma^{n}) + \sigma^{n}$$



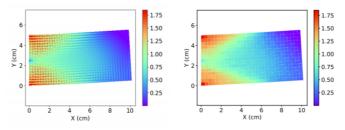
< □ > < /□ >

- ∢ ⊒ →

Modeling Elasto-plasticity: Multi-scale



Fiber Reinforced Thin Plate



Reference von Mises stress

SPD-NN

イロト 不得 トイヨト イヨト

3

Static Hyperelasticity Problem

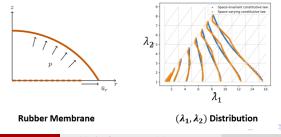
• Consider an axisymmetric Mooney-Rivlin hyperelastic incompressible material with an energy density function

$$egin{aligned} \mathcal{W}(\lambda_1,\lambda_2,\lambda_3) &= \mu(\lambda_1^2+\lambda_2^2+\lambda_3^2-3)+lpha(\lambda_1^2\lambda_2^2+\lambda_2^2\lambda_3^2+\lambda_3^2\lambda_1^2-3)\ &J &= \lambda_1\lambda_2\lambda_3 = 1 \end{aligned}$$

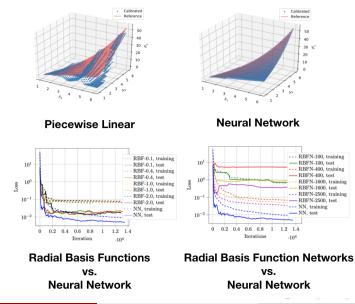
• The constitutive relations is modeled as

$$\mathcal{N}_{\theta}: (\lambda_1, \lambda_2) \rightarrow (P_1, P_2)$$

Here (P_1, P_2) is the stress tensor.



Comparison with Traditional Basis Functions



ADCME

30/1

Learning Spatially-varying fields

• Hyperelasticity: minimizing the neo-Hookean stored energy

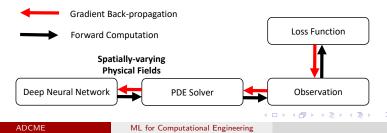
$$\min_{u} \psi = \frac{\mu}{2} (I_{c} - 2) - \frac{\mu}{2} \log(J) + \frac{\lambda}{8} \log(J)^{2}$$

where

$$F = I + \nabla u, \ C = F^T F, \ J = \det(C), \ I_c = \operatorname{trace}(C)$$

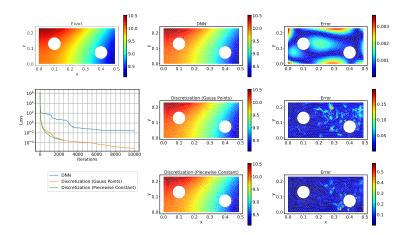
• Lamé parameters

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}, \quad \mu = \frac{E}{2(1+\nu)}$$



Learning Spatially-varying fields

 DNN provides expressive data-driven models and regularization (e.g., spatial dependencies).



ML for Computational Engineering

Poroelasticity

• Multi-physics Interaction of Coupled Geomechanics and Multi-Phase Flow Equations

$$\operatorname{div}\boldsymbol{\sigma}(\mathbf{u}) - b\nabla p = 0$$

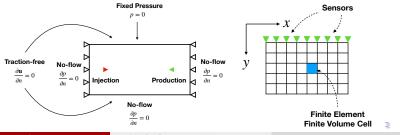
$$\frac{1}{M}\frac{\partial p}{\partial t} + b\frac{\partial \epsilon_{\mathbf{v}}(\mathbf{u})}{\partial t} - \nabla \cdot \left(\frac{k}{B_{f}\mu}\nabla p\right) = f(x,t)$$

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}(\epsilon, \dot{\epsilon})$$

• Approximate the constitutive relation by a neural network

4

$$oldsymbol{\sigma}^{n+1} = \mathcal{NN}_{oldsymbol{ heta}}(oldsymbol{\sigma}^n,oldsymbol{\epsilon}^n) + Holdsymbol{\epsilon}^{n+1}$$



ADCME

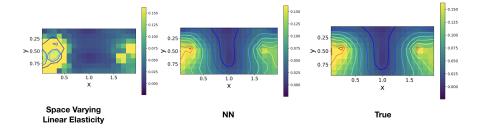
ML for Computational Engineering

33/1

Poroelasticity

• Comparison with space varying linear elasticity approximation

$$\sigma = H(x, y)\epsilon$$

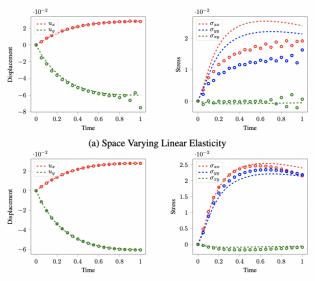


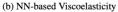
4 A I

A B A A B A

э

Poroelasticity





ML for Computational Engineering

1 ≣ ▶

æ

A Paradigm for Inverse Modeling

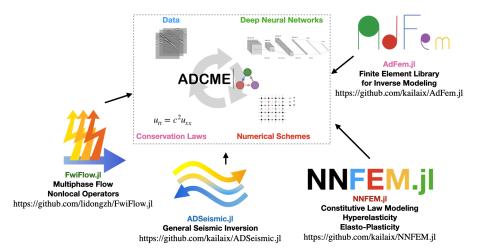
 Most inverse modeling problems can be classified into 4 categories. To be more concrete, consider the PDE for describing physics

$$\nabla \cdot (\theta \nabla u(x)) = 0 \quad \mathcal{BC}(u(x)) = 0 \tag{4}$$

We observe some quantities depending on the solution u and want to estimate θ .

Expression	Description	ADCME Solution	Note	
$\nabla \cdot (\boldsymbol{c} \nabla \boldsymbol{u}(\boldsymbol{x})) = \boldsymbol{0}$	Parameter Inverse Problem	Discrete Adjoint State Method	c is the minimizer of the error functional	
$\nabla \cdot (f(x)\nabla u(x)) = 0$	Function Inverse Problem	Neural Network Functional Approximator	$f(x) \approx \mathcal{NN}_w(x)$	
$\nabla \cdot (f(u)\nabla u(x)) = 0$	Relation Inverse Problem	Residual Learning Physics Constrained Learning (PCL)	$f(u) \approx \mathcal{NN}_w(u)$	
$\nabla\cdot(\boldsymbol{\varpi}\nabla u(\boldsymbol{x}))=0$	Stochastic Inverse Problem	Physical Generative Neural Networks (PhysGNN)	$\varpi = \mathcal{NN}_w(v_{\text{latent}})$	

A General Approach to Inverse Modeling



ML for Computational Engineering

< □ > < 同 > < 回 > < 回 > < 回 >