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Inverse Modeling

Inverse modeling identifies a certain set of parameters or functions
with which the outputs of the forward analysis matches the desired
result or measurement.

Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.
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Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

The loss function Lh measures the discrepancy between the prediction
uh and the observation uobs, e.g., Lh(uh) = ‖uh − uobs‖22.

θ is the model parameter to be calibrated.

The physics constraints Fh(θ, uh) = 0 are described by a system of
partial differential equations or differential algebraic equations
(DAEs); e.g.,

Fh(θ, uh) = A(θ)uh − fh = 0
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Function Inverse Problem

min
f

Lh(uh) s.t. Fh(f , uh) = 0

What if the unknown is a function instead of a set of parameters?

Koopman operator in dynamical systems.

Constitutive relations in solid mechanics.

Turbulent closure relations in fluid mechanics.

...

The candidate solution space is infinite dimensional.
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Penalty Methods

Parametrize f with fθ and incorporate the physical constraint as a
penalty term (regularization, prior, . . . ) in the loss function.

min
θ, uh

Lh(uh) + λ‖Fh(fθ, uh)‖22

May not satisfy physical constraint Fh(fθ, uh) = 0 accurately;
Slow convergence for stiff problems;

High dimensional optimization problem; both θ and uh are variables.
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Machine Learning for Computational Engineering

min
θ

Lh(uh) s.t. Fh(NNθ, uh) = 0 ← Solved numerically

Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.
Machine Learning for Computational Engineering: the unknown
function is approximated by a deep neural network, and the physical
constraints are enforced by numerical schemes.
Satisfy the physics to the largest extent.
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Gradient Based Optimization

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0 (1)

We can now apply a gradient-based optimization method to (1).
The key is to calculate a descent direction gk

θk+1 ← θk − αgk
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Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

Deep learning (and many other machine learning techniques) and
numerical schemes share the same computational model: composition
of individual operators.
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Computational Graph for Numerical Schemes

To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “AD language”: computational
graph.

No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.
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ADCME: Computational-Graph-based Numerical
Simulation
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How ADCME works

ADCME translates your numerical simulation codes to computational
graph and then the computations are delegated to a heterogeneous
task-based parallel computing environment through TensorFlow
runtime.
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Challenges in AD

Most AD frameworks only deal with explicit
operators, i.e., the functions that has analytical
derivatives, or composition of these functions.

Many scientific computing algorithms are
iterative or implicit in nature.

Linear/Nonlinear Explicit/Implicit Expression

Linear Explicit y = Ax
Nonlinear Explicit y = F (x)
Linear Implicit Ay = x
Nonlinear Implicit F (x , y) = 0
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Example

Consider a function f : x → y , which is implicitly defined by

F (x , y) = x3 − (y3 + y) = 0

If not using the cubic formula for finding the roots, the forward
computation consists of iterative algorithms, such as the Newton’s
method and bisection method

y0 ← 0
k ← 0
while |F (x , yk)| > ε do

δk ← F (x , yk)/F ′y (x , yk)

yk+1 ← yk − δk
k ← k + 1

end while
Return yk

l ← −M, r ← M, m← 0
while |F (x ,m)| > ε do

c ← a+b
2

if F (x ,m) > 0 then
a← m

else
b ← m

end if
end while
Return c
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Example

An efficient way to do automatic differentiation is to apply the implicit
function theorem. For our example, F (x , y) = x3 − (y3 + y) = 0;
treat y as a function of x and take the derivative on both sides

3x2 − 3y(x)2y ′(x)− y ′(x) = 0⇒ y ′(x) =
3x2

3y2 + 1

The above gradient is exact.

Can we apply the same idea to inverse modeling?
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Physics Constrained Learning (PCL)

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

Assume that we solve for uh = Gh(θ) with Fh(θ, uh) = 0, and then

L̃h(θ) = Lh(Gh(θ))

Applying the implicit function theorem

∂Fh(θ, uh)

∂θ
+
∂Fh(θ, uh)

∂uh

∂Gh(θ)

∂θ
= 0⇒

∂Gh(θ)

∂θ
= −

(∂Fh(θ, uh)

∂uh

)−1 ∂Fh(θ, uh)

∂θ

Finally we have

∂L̃h(θ)

∂θ
=
∂Lh(uh)

∂uh

∂Gh(θ)

∂θ
= −

∂Lh(uh)

∂uh

(∂Fh(θ, uh)

∂uh

∣∣∣
uh=Gh(θ)

)−1 ∂Fh(θ, uh)

∂θ

∣∣∣
uh=Gh(θ)

ADCME ML for Computational Engineering 19 / 23



Physics Constrained Learning for Stiff Problems

For stiff problems, better to resolve physics using PCL.
Consider a model problem

min
θ
‖u − u0‖22 s.t. Au = θy

PCL : min
θ

L̃h(θ) = ‖θA−1y − u0‖22 = (θ − 1)2‖u0‖22

Penalty Method : min
θ,uh

L̃h(θ, uh) = ‖uh − u0‖22 + λ‖Auh − θy‖22

Theorem

The condition number of Aλ is

lim inf
λ→∞

κ(Aλ) = κ(A)2, Aλ =

[
I 0√
λA −

√
λy

]
, y =

[
u0
0

]
and therefore, the condition number of the unconstrained optimization
problem from the penalty method is equal to the square of the condition
number of the PCL asymptotically.
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Physics Constrained Learning for Stiff Problems
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PCL: Backbone of the ADCME Infrastructure
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A General Approach to Inverse Modeling
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