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Inverse Modeling
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Inverse Modeling

@ Inverse modeling identifies a certain set of parameters or functions
with which the outputs of the forward analysis matches the desired
result or measurement.

@ Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.
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Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

mein Lp(up) s, Fp(0,up) =0

@ The loss function Ly measures the discrepancy between the prediction
up and the observation wohs, €.8., La(up) = ||un — tobs|3-

@ 0 is the model parameter to be calibrated.

@ The physics constraints Fp(6, up) = 0 are described by a system of

partial differential equations or differential algebraic equations
(DAEs); e.g.,
Fn(0, up) = A(@)up, — =0
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Function Inverse Problem

mfin Lp(up) st. Fp(f,up) =0

What if the unknown is a function instead of a set of parameters?
@ Koopman operator in dynamical systems.
o Constitutive relations in solid mechanics.
@ Turbulent closure relations in fluid mechanics.
o ...

The candidate solution space is infinite dimensional.
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Penalty Methods

@ Parametrize f with f3 and incorporate the physical constraint as a
penalty term (regularization, prior, ...) in the loss function.
- 2
min Lp(up) + AllFh(fp, un) 2
s Up

e May not satisfy physical constraint Fp(fy, uy) = 0 accurately;
e Slow convergence for stiff problems;
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e High dimensional optimization problem; both 8 and uy, are variables.
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Machine Learning for Computational Engineering

m@in Lp(up)  s.t. ’ Fr(NNg, up) =0 ‘ < Solved numerically

@ Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.

@ Machine Learning for Computational Engineering: the unknown
function is approximated by a deep neural network, and the physical
constraints are enforced by numerical schemes.

@ Satisfy the physics to the largest extent.
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Gradient Based Optimization

mein Lh(uh) s.t. Fh(9, uh) =0 (1)

@ We can now apply a gradient-based optimization method to (1).
@ The key is to calculate a descent direction gk
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Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

@ Deep learning (and many other machine learning techniques) and

numerical schemes share the same computational model: composition

of individual operators.
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Computational Graph for Numerical Schemes

@ To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “AD language”: computational
graph.

@ No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.
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ADCME: Computational-Graph-based Numerical
Simulation
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How ADCME works

o ADCME translates your numerical simulation codes to computational
graph and then the computations are delegated to a heterogeneous
task-based parallel computing environment through TensorFlow

runtime.
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Challenges in AD

. . DNN: Explicit
@ Most AD frameworks only deal with explicit b .
operators, i.e., the functions that has analytical \
derivatives, or composition of these functions. N

@ Many scientific computing algorithms are X = O -y

iterative or implicit in nature. y = a(Wx +b)

Numerical Schemes:
Implicit, Iterative

Linear/Nonlinear  Explicit/Implicit Expression

Linear Explicit y = Ax 0 ~

Nonlinear Explicit y = F(x) f— O —y
Linear Implicit Ay = x

Nonlinear Implicit F(x,y)=0 AW, 0)y=f
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Example

@ Consider a function f : x — y, which is implicitly defined by
Fx,y)=x*=(y*+y)=0

If not using the cubic formula for finding the roots, the forward
computation consists of iterative algorithms, such as the Newton's
method and bisection method

y0<_0 [« —M, r< M m+20
k<0 while |F(x, m)| > ¢ do
while |F(x, y¥)| > ¢ do c+ =P
(5k%F(X’yk)/F)//(X7yk) if F(X,m)>0then
YRk gk a+m
k—k+1 else
end while bm
Return y* end if
end while
Return ¢
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Example

@ An efficient way to do automatic differentiation is to apply the implicit
function theorem. For our example, F(x,y) = x3 — (y3 +y) =0;
treat y as a function of x and take the derivative on both sides

3x2

3¢ =3y (Y )~y () =0=y() = g5

The above gradient is exact.

Can we apply the same idea to inverse modeling?
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Physics Constrained Learning (PCL)

main Lp(up) st Fp(0,up) =0

@ Assume that we solve for up = Gp(6) with Fp(6, up) = 0, and then
La(0) = La(Gh(6))
@ Applying the implicit function theorem

OFp(0,up) | OFu(,up) OGK(0)
00 w00 °7

9Gn(0) _ _ (8Fh(9» up) ) —10Fy(8, up)
dup, 00

o Finally we have

~1 OF,(6, up)

o0

OLn(6) _ OLn(un) OGH(0) _  OLn(up) <8Fh(9:Uh)

80  Ouy a0 dup, dup,

Uh:Gh(9)> up=Gp(0)
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Physics Constrained Learning for Stiff Problems

@ For stiff problems, better to resolve physics using PCL.
@ Consider a model problem

mein |u— woll3 s.t. Au=0y
PCL min Ly(0) = [|0A™"y — uo[l3 = (6 — 1)°||uo]3

Penalty Method : renin Lp(8, up) = |lup — woll3 + Al|Aup — 8y|3
Up

Theorem
The condition number of Ay is

liminf r(Ax) = KAZ, Av= [\FIAA —\OfAy} A [l‘ﬂ

and therefore, the condition number of the unconstrained optimization

problem from the penalty method is equal to the square of the condition

number of the PCL asymptotically. ]
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Physics Constrained Learning for Stiff Problems

Parameter Inverse Problem

Au+kig(x)u=0
g(x) = 5x? + 2y?

9o(x) = 0;x% + 0,y2 + O3xy
+0,x + 05y + 04

Approximate Unknown Functions
using DNNs

-V (f(w)Vu) = h(x)

NN (u; 6;)

re =" NN(zOu 92)]
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PCL: Backbone of the ADCME Infrastructure

Optimization

Automatic Differentiation

Physics Constrained Learning
1 Backend: TensorFlow
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A General Approach to Inverse Modeling

SRl N

i / AdFem.jl
ADCME ‘ ‘.\ Finite Element Library
: -0 H for Inverse Modeling
/y; _________ https //github.com/kailaix/AdFem jl

FwiFlow.jl ’ H

Multiphase Flow .J
Nonlocal Operators M ;
https://github.com/lidongzh/FwiFlow jl " NNFEM'II

Constitutive Law Modeling
ADSeismic.jl Hyperelasticity
General Seismic Inversion Elasto-Plasticity

https://github.com/kailaix/ADSeismic.jl https://github.com/kailaix/NNFEM jl
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