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Inverse Modeling
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Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

mein Lp(up) s, Fp(0,up) =0

@ The loss function Ly measures the discrepancy between the prediction
up and the observation wohs, €.8., La(up) = ||un — tobs|3-

@ 0 is the model parameter to be calibrated.

@ The physics constraints Fp(6, up) = 0 are described by a system of

partial differential equations or differential algebraic equations
(DAEs); e.g.,
Fn(0, up) = A(@)up, — =0

ADCME ML for Computational Engineering 4/31



Function Inverse Problem

mfin Lp(up) st. Fp(f,up) =0

What if the unknown is a function instead of a set of parameters?
@ Koopman operator in dynamical systems.
o Constitutive relations in solid mechanics.
@ Turbulent closure relations in fluid mechanics.
o ...

The candidate solution space is infinite dimensional.
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Penalty Methods

@ Parametrize f with f3 and incorporate the physical constraint as a
penalty term (regularization, prior, ...) in the loss function.
- 2
min Lp(up) + AllFh(fp, un) 2
s Up

e May not satisfy physical constraint Fp(fy, uy) = 0 accurately;
e Slow convergence for stiff problems;
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e High dimensional optimization problem; both 8 and uy, are variables.
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Machine Learning for Computational Engineering

@ Approximate the unknown function with a deep neural network

main Lh(uh) s.t. Fh(NNg, uh) =0

@ Reduce the constrained optimization problem to an unconstrained
optimization problem by solving the physical constraint numerically

min Ln(0) := La(un(6))
Satisfy the physics to the largest extent
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Gradient Based Optimization

mein Zh(ﬁ) = Lp(un(9)) (1)

@ We can now apply a gradient-based optimization method to (1).
@ The key is to calculate a descent direction gk
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© ADCME: Automatic Differentiation for Computational and
Mathematical Engineering
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Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

@ Deep learning (and many other machine learning techniques) and

numerical schemes share the same computational model: composition

of individual operators.

Mathematical Fact

Back-propagation

e . Optimizer
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Automatic Differentiation | '
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Computational Graph for Numerical Schemes

@ To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “AD language”: computational
graph.

@ No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.

i+ _ g . . (85
[¢<s:*‘—52)—v'(mz(Sz*UKV‘l‘z) <q s ) A

R

4 ¢ ¢

—

—= /owzo\ _Ow; o\ 0 -0w0

t

tn tn+1 tn+2

ADCME ML for Computational Engineering 11/31



ADCME: Computational-Graph-based Numerical
Simulation

ADCME
Computational Graph
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—} Numerical PDE Schemes, Linear Solvers, Arithmetic Operations, Optimization Solvers, Neural Networks, ...
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How ADCME works

o ADCME translates your numerical simulation codes to computational
graph and then the computations are delegated to a heterogeneous
task-based parallel computing environment through TensorFlow

runtime.
divo(u) = f(z) z€Q
o(u) = Ce(u) ADCME
u(z) = ug(z) zeT,
o(z)n(z) =t(z) wel
¢-o

.. 5,

~=Se'smic

AD-Capable
Numerical Simulator Engines

ML for Computational Engineering

ADCME

\

|
/ \

\

CPU

GPU

TPU

Heterogenous
Task-based
Parallel Runtime

13/31



Outline

© Distributed Computing via MPI
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Parallel Computing

@ Parallel computing is essential for accelerating simulation and
satisfying demanding memory requirements.
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Distributed Optimization

o ADCME also supports MPIl-based distributed computing. The parallel
model is designed specially for scientific computing.

Comput ompute
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Next Time Step Data Transter

Data Transter

@ Key idea: Everything is an operator. Computation and
communications are converters of data streams (tensors) through the

computational graph.

mpi_bcast, mpi_sum, mpi_send, mpi_recv, mpi_halo_exchange, ...
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Hybrid Parallel Computing

We use dependency injection techniques to ensure consistency.

Rank 0 Rank 1 Rank 0 Rank 1

J l | l
e //_\ / \

| l l I

<—> MPICalls — Dependency Injection
Rank 0 Task Queue 3 2 1 = Executor
Rank 1 Task Queue 3 2 1 —» Executor
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Interoperability with Hypre

V - (NNg(x)Vu(x)) = f(x)

u(x)=0

The discretization leads to a linear system, which is solved using Hypre.
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@ Physics Constrained Learning
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Challenges in AD

. . DNN: Explicit
@ Most AD frameworks only deal with explicit b .
operators, i.e., the functions that has analytical \
derivatives, or composition of these functions. N

@ Many scientific computing algorithms are X = O -y

iterative or implicit in nature. y = a(Wx +b)

Numerical Schemes:
Implicit, Iterative

Linear/Nonlinear  Explicit/Implicit Expression

Linear Explicit y = Ax 0 ~

Nonlinear Explicit y = F(x) f— O —y
Linear Implicit Ay = x

Nonlinear Implicit F(x,y)=0 AW, 0)y=f
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Physics Constrained Learning (PCL)

main Lp(up) st Fp(0,up) =0

@ Assume that we solve for up = Gp(6) with Fp(6, up) = 0, and then
La(0) = La(Gh(6))
@ Applying the implicit function theorem

OFp(0,up) | OFu(,up) OGK(0)
00 w00 °7

9Gn(0) _ _ (8Fh(9» up) ) —10Fy(8, up)
dup, 00

o Finally we have

~1 OF,(6, up)

o0

OLn(6) _ OLn(un) OGH(0) _  OLn(up) <8Fh(9:Uh)

80  Ouy a0 dup, dup,

Uh:Gh(9)> up=Gp(0)
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Theoretical Analysis

@ For stiff problems, better to resolve physics using PCL.
@ Consider a model problem

mein |u— woll3 s.t. Au=0y
PCL: min Ly(0) = [|0A™"y — uo[l3 = (6 — 1)°||uo]3
Penalty Method : renin Lp(8, up) = |lup — woll3 + Al|Aup — 8y|3
Up

The condition number of Ay is

lim inf RAN) = K(A?, A= [\fiA —\Oﬁ\y} T [l‘ﬂ

and therefore, the condition number of the unconstrained optimization

problem from the penalty method is equal to the the square of the

condition number of the PCL asymptotically. |
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Physics Constrained Learning for Stiff Problems

Parameter Inverse Problem

Au+k?g(x)u=0
g(x) = 5x% + 2y?

go(x) = 6:x% + 0,y% + O3xy
+0,x + 605y + 64

Approximate Unknown Functions
using DNNs

=V (f(w)Vu) = h(x)

_1A@
f(”)‘[lo fz(u)]
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PCL: Backbone of the ADCME Infrastructure

Optimization

Automatic Differentiation

Physics Constrained Learning
1 Backend: TensorFlow
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© Applications: Constitutive Modeling
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Governing Equations

ogijj +p b; =p U
stress  external force velocity

1 (2)
eij = 5(uji+ uij)
~—

strain
o Observable: external/body force b;, displacements u; (strains ¢;; can
be computed from v;); density p is known.
@ Unobservable: stress o;.

@ Data-driven Constitutive Relations: modeling the strain-stress relation
using a neural network

stress = My(strain, .. .) ‘ (3)

and the neural network is trained by coupling Eq. 2 and Eq. 3.
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Representation of Constitutive Relations

@ Proper form of constitutive relation is crucial for numerical stability

Elasticity = o = Cye

o = My(e) (Static)
o™ = Le(e")Lo(e") (" — €") + " (Dynamic)

Elaso-Plasticity = 0" = Lo(e"™',€", 0" )Lo(e", €",6") (" — €") + &

Hyperelasticity = {

Ly
Lo Loz
Lo — L3311 L33z Lszs3
L2323
Lis13

L1z
@ Weak convexity: LeLg >0

o Time consistency: "t — " when €™ — €”
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Modeling Elasto-plasticity

@ Comparison of different neural network architectures

o,n+1 — Lg(€n+1,6",Un)Lg(GnJrl,En,O'n)T(E"Jrl . en) +on

o™t = NNg(e”+1, € o)

o™ = NNg(e"t1, e, 0™) + o"
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Modeling Elasto-plasticity: Multi-scale

X (cm)
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Other Applications

@ Time-Lapse Full-Waveform Inversion for Subsurface Flow;
@ Seismic Inversion;

@ Viscoelasticity Modeling;

@ Seismic Inversion;

@ Stochastic Differential Equations;

@ Navier Stokes Equations;

° ...

See the following slide for more details:

https://kailaix.github.io/ADCMESlides/2020_11_17.pdf
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A General Approach to Inverse Modeling

SRl N

i / AdFem.jl
ADCME ‘ ‘.\ Finite Element Library
: -0 H for Inverse Modeling
/y; _________ https //github.com/kailaix/AdFem jl

FwiFlow.jl ’ H

Multiphase Flow .J
Nonlocal Operators M ;
https://github.com/lidongzh/FwiFlow jl " NNFEM'II

Constitutive Law Modeling
ADSeismic.jl Hyperelasticity
General Seismic Inversion Elasto-Plasticity

https://github.com/kailaix/ADSeismic.jl https://github.com/kailaix/NNFEM jl
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