Machine Learning for Inverse Problems in
Computational Engineering

Kailai Xu and Eric Darve
https://github.com/kailaix/ADCME. j1

ADCME ML for Computational Engineering 1/31

https://github.com/kailaix/ADCME.jl

Outline

© Inverse Modeling

ADCME ML for Computational Engineering 2/31

Inverse Modeling

Forward Problem

Prediction
— | Physical Laws | —> of
Observations

Model
Parameters

Inverse Problem

Estimation
Observations | = | Physical Laws | —> of
Parameters

ADCME ML for Computational Engineering 3/31

Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

mein Lp(up) s, Fp(0,up) =0

@ The loss function Ly measures the discrepancy between the prediction
up and the observation wohs, €.8., La(up) = ||un — tobs|3-

@ 0 is the model parameter to be calibrated.

@ The physics constraints Fp(6, up) = 0 are described by a system of

partial differential equations or differential algebraic equations
(DAEs); e.g.,
Fn(0, up) = A(@)up, — =0

ADCME ML for Computational Engineering 4/31

Function Inverse Problem

mfin Lp(up) st. Fp(f,up) =0

What if the unknown is a function instead of a set of parameters?
@ Koopman operator in dynamical systems.
o Constitutive relations in solid mechanics.
@ Turbulent closure relations in fluid mechanics.
o ...

The candidate solution space is infinite dimensional.

ADCME ML for Computational Engineering 5/31

Penalty Methods

@ Parametrize f with f3 and incorporate the physical constraint as a
penalty term (regularization, prior, ...) in the loss function.
- 2
min Lp(up) + AllFh(fp, un) 2
s Up

e May not satisfy physical constraint Fp(fy, uy) = 0 accurately;
e Slow convergence for stiff problems;

10 10
107! 4 “% N
1074 5 10
—PM, freq=0.5 — PCL, freq=0.5

o | = PM, freq=0.75 . =—PCL, freq=0.75
1077 1" — PM, freq=1.0 107" 1 PCL, freq=1.0

— — — T
0 02 04 06 08 1 12 14 o 2 1 6 8 0 12
Tterations 100 Tterations

e High dimensional optimization problem; both 8 and uy, are variables.

ADCME ML for Computational Engineering 6/31

Machine Learning for Computational Engineering

@ Approximate the unknown function with a deep neural network

main Lh(uh) s.t. Fh(NNg, uh) =0

@ Reduce the constrained optimization problem to an unconstrained
optimization problem by solving the physical constraint numerically

min Ln(0) := La(un(6))
Satisfy the physics to the largest extent

Data

(8

First Principles Numerical Schemes

— 2,
Uy = CTUyy

R R S

Inverse Modeling Neural Networks

ADCME ML for Computational Engineering 7/31

Gradient Based Optimization

mein Zh(ﬁ) = Lp(un(9)) (1)

@ We can now apply a gradient-based optimization method to (1).
@ The key is to calculate a descent direction gk

Update
Model Parameters)

Calculate
Gradients

>

x

+

—| & [=
llT
i =

()"

Loss Function —— Calibrated Model

/ \ < tol?
Predicted Observed
Data Data
Initial and
Boundary Conditions

ADCME ML for Computational Engineering 8/31

Outline

© ADCME: Automatic Differentiation for Computational and
Mathematical Engineering

ADCME ML for Computational Engineering 9/31

Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

@ Deep learning (and many other machine learning techniques) and

numerical schemes share the same computational model: composition

of individual operators.

Mathematical Fact

Back-propagation

e . Optimizer
Reverse-mode { eryses umarca Oportons |
Automatic Differentiation | '

: ! v
<k <o <o P
Parameter —b — — —_ «—>» |Observation|
—— Forward calculation

Discrete | ,
Adjoint-State Method L= H = [St guoans

ADCME ML for Computational Engineering

10/31

Computational Graph for Numerical Schemes

@ To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “AD language”: computational
graph.

@ No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.

i+ _ g . . (85
[¢<s:*‘—52)—v'(mz(Sz*UKV‘l‘z) <q s) A

R

4 ¢ ¢

—

—= /owzo\ _Ow; o\ 0 -0w0

t

tn tn+1 tn+2

ADCME ML for Computational Engineering 11/31

ADCME: Computational-Graph-based Numerical
Simulation

ADCME
Computational Graph

Custom Optimizers Output Custom Operators
CustomOptimizer H customop()
BFGS cuon &

Gradient .-
Ipopt Fortran Kernel -
pop =

NLopt Checkpointing

MUMPS Parallel Solver

- 2
W/

... Input

OOOOOO

—} Numerical PDE Schemes, Linear Solvers, Arithmetic Operations, Optimization Solvers, Neural Networks, ...

DCME ML for Computational Engineering 12 /31

How ADCME works

o ADCME translates your numerical simulation codes to computational
graph and then the computations are delegated to a heterogeneous
task-based parallel computing environment through TensorFlow

runtime.
divo(u) = f(z) z€Q
o(u) = Ce(u) ADCME
u(z) = ug(z) zeT,
o(z)n(z) =t(z) wel
¢-o

.. 5,

~=Se'smic

AD-Capable
Numerical Simulator Engines

ML for Computational Engineering

ADCME

\

|
/ \

\

CPU

GPU

TPU

Heterogenous
Task-based
Parallel Runtime

13/31

Outline

© Distributed Computing via MPI

ADCME ML for Computational Engineering 14 /31

Parallel Computing

@ Parallel computing is essential for accelerating simulation and
satisfying demanding memory requirements.

‘_E

Modelparallism

i

29099

*

Machine 3|

Oata paralielsm

Deep Learning Data/Model Parallelism

ADCME

et
&
o]
o
o
o

i
t

Aggregate Gradient

it

§

§688 8800

88868

\
1
1
1
1
!

N

\
\
\

7 i
/ !
|

/
(e} (G

it
G

- Workioad partioning

E——

(1}

Broadcast
27 1t R
(o] (Govont] [come)
Com J{ Jw)
= = >

mP MPL [

B @ EE

it
Ce) G (o)

_. Wz

4= Data Exchange

Scientific Computing Mixed Parallelism

ML for Computational Engineering

15 /31

Distributed Optimization

o ADCME also supports MPIl-based distributed computing. The parallel
model is designed specially for scientific computing.

Comput ompute
. o Computational Graph m S Ehrs Computational Graph
O i on Processor 0 e on Processor 0
Last Time tep \‘snavajau. e s e
Next Time Step e Next Time Step
A DT A Dot
i i
— | i i
I 1
1 Compute
Comput
! conpue Computational Graph &= Computational Graph
Coeficents Facamets on Processor 1
—— on Processor 1 update
! somvatle ! s
v ~

Next Time Step Data Transter

Data Transter

@ Key idea: Everything is an operator. Computation and
communications are converters of data streams (tensors) through the

computational graph.

mpi_bcast, mpi_sum, mpi_send, mpi_recv, mpi_halo_exchange, ...

ADCME ML for Computational Engineering 16 /31

Hybrid Parallel Computing

We use dependency injection techniques to ensure consistency.

Rank 0 Rank 1 Rank 0 Rank 1

J l | l
e //_\ / \

| l l I

<—> MPICalls — Dependency Injection
Rank 0 Task Queue 3 2 1 = Executor
Rank 1 Task Queue 3 2 1 —» Executor

ADCME ML for Computational Engineering 17 /31

Interoperability with Hypre

V - (NNg(x)Vu(x)) = f(x)

u(x)=0

The discretization leads to a linear system, which is solved using Hypre.

Tn Forward
11 Backward

1 4 9 16 25 36 49 64 S 100 400 900 1600 2500 3600

Number of Processors

11 Forward
11 Backward

1 4 9 16 25 36 49 64 81 100 400 900 16002500 3600
Number of Processors

Weak Scalability

ADCME

Efficiency

x € Q
x € 02

20 40 60 80
Number of Processors

20 40 60 80
Number of Processors

Strong Scalability

ML for Computational Engineering

4 Cores

1 Cores

4 Cores

1 Cores

18/31

Outline

@ Physics Constrained Learning

ADCME ML for Computational Engineering 19 /31

Challenges in AD

. . DNN: Explicit
@ Most AD frameworks only deal with explicit b .
operators, i.e., the functions that has analytical \
derivatives, or composition of these functions. N

@ Many scientific computing algorithms are X = O -y

iterative or implicit in nature. y = a(Wx +b)

Numerical Schemes:
Implicit, Iterative

Linear/Nonlinear Explicit/Implicit Expression

Linear Explicit y = Ax 0 ~

Nonlinear Explicit y = F(x) f— O —y
Linear Implicit Ay = x

Nonlinear Implicit F(x,y)=0 AW, 0)y=f

ADCME ML for Computational Engineering 20/31

Physics Constrained Learning (PCL)

main Lp(up) st Fp(0,up) =0

@ Assume that we solve for up = Gp(6) with Fp(6, up) = 0, and then
La(0) = La(Gh(6))
@ Applying the implicit function theorem

OFp(0,up) | OFu(,up) OGK(0)
00 w00 °7

9Gn(0) _ _ (8Fh(9» up)) —10Fy(8, up)
dup, 00

o Finally we have

~1 OF,(6, up)

o0

OLn(6) _ OLn(un) OGH(0) _ OLn(up) <8Fh(9:Uh)

80 Ouy a0 dup, dup,

Uh:Gh(9)> up=Gp(0)

ADCME ML for Computational Engineering 21/31

Theoretical Analysis

@ For stiff problems, better to resolve physics using PCL.
@ Consider a model problem

mein |u— woll3 s.t. Au=0y
PCL: min Ly(0) = [|0A™"y — uo[l3 = (6 — 1)°||uo]3
Penalty Method : renin Lp(8, up) = |lup — woll3 + Al|Aup — 8y|3
Up

The condition number of Ay is

lim inf RAN) = K(A?, A= [\fiA —\Oﬁ\y} T [l‘ﬂ

and therefore, the condition number of the unconstrained optimization

problem from the penalty method is equal to the the square of the

condition number of the PCL asymptotically. |
ML for Computational Engineering 22/31

Physics Constrained Learning for Stiff Problems

Parameter Inverse Problem

Au+k?g(x)u=0
g(x) = 5x% + 2y?

go(x) = 6:x% + 0,y% + O3xy
+0,x + 605y + 64

Approximate Unknown Functions
using DNNs

=V (f(w)Vu) = h(x)

_1A@
f(”)‘[lo fz(u)]

ADCME

10! 10!
107 A 107!
51074
107° 4 10~
—PM, freq=0.5 — PCL, freq=0.5
_ | —PM, freq=0.75 _ —PCL, fre 5
107" 1 —PM, freq=1.0 107"~ — PCL, freq=1.0
I
0 02 04 06 08 1 13 0o 2 4 6 8 10 12Qu
Iterations Iterations
10° 4 \/\7 —
[—_— 0)— f1(u)]
5 107 PM, W"i
z ! IAD)
| pM, L2t 9) Fa(u)
2 10724
k] --- PCL. I[l(u) fl(u)]
£ 1074
--- pCL. £ “0 fz(ﬂ |
10-4 Ja(u)
T T T r T v r
0.0 0.1 02 03 04 05 06
u
ML for Computational Engineering 23 /31

PCL: Backbone of the ADCME Infrastructure

Optimization

Automatic Differentiation

Physics Constrained Learning
1 Backend: TensorFlow

ADCME ML for Computational Engineering 24 /31

Outline

© Applications: Constitutive Modeling

ADCME ML for Computational Engineering 25/31

Governing Equations

ogijj +p b; =p U
stress external force velocity

1 (2)
eij = 5(uji+ uij)
~—

strain
o Observable: external/body force b;, displacements u; (strains ¢;; can
be computed from v;); density p is known.
@ Unobservable: stress o;.

@ Data-driven Constitutive Relations: modeling the strain-stress relation
using a neural network

stress = My(strain, .. .) ‘ (3)

and the neural network is trained by coupling Eq. 2 and Eq. 3.

ADCME ML for Computational Engineering 26 /31

Representation of Constitutive Relations

@ Proper form of constitutive relation is crucial for numerical stability

Elasticity = o = Cye

o = My(e) (Static)
o™ = Le(e")Lo(e") (" — €") + " (Dynamic)

Elaso-Plasticity = 0" = Lo(e"™',€", 0")Lo(e", €",6") (" — €") + &

Hyperelasticity = {

Ly
Lo Loz
Lo — L3311 L33z Lszs3
L2323
Lis13

L1z
@ Weak convexity: LeLg >0

o Time consistency: "t — " when €™ — €”

ADCME ML for Computational Engineering 27/31

Modeling Elasto-plasticity

@ Comparison of different neural network architectures

o,n+1 — Lg(€n+1,6",Un)Lg(GnJrl,En,O'n)T(E"Jrl . en) +on

o™t = NNg(e”+1, € o)

o™ = NNg(e"t1, e, 0™) + o"

plastic deformation elastic unloading
0.06 A\ a 0.06 = 0.06 —
|4 .
0.05 m 0.05
o) —
0.044

0.04

© Reference

o

o0z & Reference
: ¢ --- 1-layer NN1
ayer NN1

o o
2 o
B 2

CholNN
CholNN
CholNN
CholNN 0.004

Displacement (m)

layer NN1

0.01
--- 4-layer NN1 0.004

0.00 0.05 0.10 0.15 0.20
Time (s)

0.00 4

0.00 0.05 0.10 0.15 0.20

0.00 l 0.05 0.10 0.15 020
Time (s)

elastic deformation Time ()

28 /31

ADCME ML for Computational Engineering

Modeling Elasto-plasticity: Multi-scale

X (cm)

175
150 6
=
100 £
s
0.75 >2
0.50 o — -
025
8 10 []

Reference von Mises stress

ADCME

ML for Computational Engineering

10

175
150
125
1.00
0.75
0.50
0.25

29/31

Other Applications

@ Time-Lapse Full-Waveform Inversion for Subsurface Flow;
@ Seismic Inversion;

@ Viscoelasticity Modeling;

@ Seismic Inversion;

@ Stochastic Differential Equations;

@ Navier Stokes Equations;

° ...

See the following slide for more details:

https://kailaix.github.io/ADCMESlides/2020_11_17.pdf

ADCME ML for Computational Engineering 30/31

https://kailaix.github.io/ADCMESlides/2020_11_17.pdf

A General Approach to Inverse Modeling

SRl N

i / AdFem.jl
ADCME ‘ ‘.\ Finite Element Library
: -0 H for Inverse Modeling
/y; _________ https //github.com/kailaix/AdFem jl

FwiFlow.jl ’ H

Multiphase Flow .J
Nonlocal Operators M ;
https://github.com/lidongzh/FwiFlow jl " NNFEM'II

Constitutive Law Modeling
ADSeismic.jl Hyperelasticity
General Seismic Inversion Elasto-Plasticity

https://github.com/kailaix/ADSeismic.jl https://github.com/kailaix/NNFEM jl

ADCME ML for Computational Engineering 31/31

	Inverse Modeling
	ADCME: Automatic Differentiation for Computational and Mathematical Engineering
	Distributed Computing via MPI
	Physics Constrained Learning
	Applications: Constitutive Modeling

