
Machine Learning for Inverse Problems in
Computational Engineering

Kailai Xu and Eric Darve
https://github.com/kailaix/ADCME.jl

ADCME ML for Computational Engineering 1 / 31

https://github.com/kailaix/ADCME.jl

Outline

1 Inverse Modeling

2 ADCME: Automatic Differentiation for Computational and
Mathematical Engineering

3 Distributed Computing via MPI

4 Physics Constrained Learning

5 Applications: Constitutive Modeling

ADCME ML for Computational Engineering 2 / 31

Inverse Modeling

Forward Problem

Inverse Problem

Model
Parameters

Observations

Physical Laws

Physical Laws
Estimation

of
Parameters

Prediction
of

Observations

ADCME ML for Computational Engineering 3 / 31

Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

The loss function Lh measures the discrepancy between the prediction
uh and the observation uobs, e.g., Lh(uh) = ‖uh − uobs‖22.

θ is the model parameter to be calibrated.

The physics constraints Fh(θ, uh) = 0 are described by a system of
partial differential equations or differential algebraic equations
(DAEs); e.g.,

Fh(θ, uh) = A(θ)uh − fh = 0

ADCME ML for Computational Engineering 4 / 31

Function Inverse Problem

min
f

Lh(uh) s.t. Fh(f , uh) = 0

What if the unknown is a function instead of a set of parameters?

Koopman operator in dynamical systems.

Constitutive relations in solid mechanics.

Turbulent closure relations in fluid mechanics.

...

The candidate solution space is infinite dimensional.

ADCME ML for Computational Engineering 5 / 31

Penalty Methods

Parametrize f with fθ and incorporate the physical constraint as a
penalty term (regularization, prior, . . .) in the loss function.

min
θ, uh

Lh(uh) + λ‖Fh(fθ, uh)‖22

May not satisfy physical constraint Fh(fθ, uh) = 0 accurately;
Slow convergence for stiff problems;

High dimensional optimization problem; both θ and uh are variables.

ADCME ML for Computational Engineering 6 / 31

Machine Learning for Computational Engineering

1 Approximate the unknown function with a deep neural network

min
θ

Lh(uh) s.t. Fh(NNθ, uh) = 0

2 Reduce the constrained optimization problem to an unconstrained
optimization problem by solving the physical constraint numerically

min
θ

L̃h(θ) := Lh(uh(θ))

Satisfy the physics to the largest extent

ADCME ML for Computational Engineering 7 / 31

Gradient Based Optimization

min
θ

L̃h(θ) := Lh(uh(θ)) (1)

We can now apply a gradient-based optimization method to (1).
The key is to calculate a descent direction gk

θk+1 ← θk − αgk

Predicted
Data

Observed
Data

Loss Function

Calculate
Gradients

Update
Model Parameters

PDE

Initial and
Boundary Conditions

Optimizer

< tol?
Calibrated Model

ADCME ML for Computational Engineering 8 / 31

Outline

1 Inverse Modeling

2 ADCME: Automatic Differentiation for Computational and
Mathematical Engineering

3 Distributed Computing via MPI

4 Physics Constrained Learning

5 Applications: Constitutive Modeling

ADCME ML for Computational Engineering 9 / 31

Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

Deep learning (and many other machine learning techniques) and
numerical schemes share the same computational model: composition
of individual operators.

Mathematical Fact

Back-propagation
||

Reverse-mode
Automatic Differentiation

||
Discrete

Adjoint-State Method

ADCME ML for Computational Engineering 10 / 31

Computational Graph for Numerical Schemes

To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “AD language”: computational
graph.

No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.

S2

u ϕ

mt
Ψ2

ϕ(Sn+1
2 − Sn2) − ∇ ⋅ (m2(Sn+1

2)K ∇Ψn2) Δt = (qn2 + qn1
m2(Sn+12)
m1(Sn+12)) Δt

S2

u ϕ

mt
Ψ2

S2

u ϕ

mt
Ψ2

tn tn+1 tn+2

ADCME ML for Computational Engineering 11 / 31

ADCME: Computational-Graph-based Numerical
Simulation

ADCME ML for Computational Engineering 12 / 31

How ADCME works

ADCME translates your numerical simulation codes to computational
graph and then the computations are delegated to a heterogeneous
task-based parallel computing environment through TensorFlow
runtime.

ADCME ML for Computational Engineering 13 / 31

Outline

1 Inverse Modeling

2 ADCME: Automatic Differentiation for Computational and
Mathematical Engineering

3 Distributed Computing via MPI

4 Physics Constrained Learning

5 Applications: Constitutive Modeling

ADCME ML for Computational Engineering 14 / 31

Parallel Computing

Parallel computing is essential for accelerating simulation and
satisfying demanding memory requirements.

ADCME ML for Computational Engineering 15 / 31

Distributed Optimization

ADCME also supports MPI-based distributed computing. The parallel
model is designed specially for scientific computing.

Key idea: Everything is an operator. Computation and
communications are converters of data streams (tensors) through the
computational graph.

mpi bcast, mpi sum, mpi send, mpi recv, mpi halo exchange, ...

ADCME ML for Computational Engineering 16 / 31

Hybrid Parallel Computing

We use dependency injection techniques to ensure consistency.

ADCME ML for Computational Engineering 17 / 31

Interoperability with Hypre

∇ · (NNθ(x)∇u(x)) = f (x) x ∈ Ω

u(x) = 0 x ∈ ∂Ω

The discretization leads to a linear system, which is solved using Hypre.

ADCME ML for Computational Engineering 18 / 31

Outline

1 Inverse Modeling

2 ADCME: Automatic Differentiation for Computational and
Mathematical Engineering

3 Distributed Computing via MPI

4 Physics Constrained Learning

5 Applications: Constitutive Modeling

ADCME ML for Computational Engineering 19 / 31

Challenges in AD

Most AD frameworks only deal with explicit
operators, i.e., the functions that has analytical
derivatives, or composition of these functions.

Many scientific computing algorithms are
iterative or implicit in nature.

Linear/Nonlinear Explicit/Implicit Expression

Linear Explicit y = Ax
Nonlinear Explicit y = F (x)
Linear Implicit Ay = x
Nonlinear Implicit F (x , y) = 0

ADCME ML for Computational Engineering 20 / 31

Physics Constrained Learning (PCL)

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

Assume that we solve for uh = Gh(θ) with Fh(θ, uh) = 0, and then

L̃h(θ) = Lh(Gh(θ))

Applying the implicit function theorem

∂Fh(θ, uh)

∂θ
+
∂Fh(θ, uh)

∂uh

∂Gh(θ)

∂θ
= 0⇒

∂Gh(θ)

∂θ
= −

(∂Fh(θ, uh)

∂uh

)−1 ∂Fh(θ, uh)

∂θ

Finally we have

∂L̃h(θ)

∂θ
=
∂Lh(uh)

∂uh

∂Gh(θ)

∂θ
= −

∂Lh(uh)

∂uh

(∂Fh(θ, uh)

∂uh

∣∣∣
uh=Gh(θ)

)−1 ∂Fh(θ, uh)

∂θ

∣∣∣
uh=Gh(θ)

ADCME ML for Computational Engineering 21 / 31

Theoretical Analysis

For stiff problems, better to resolve physics using PCL.
Consider a model problem

min
θ
‖u − u0‖22 s.t. Au = θy

PCL : min
θ

L̃h(θ) = ‖θA−1y − u0‖22 = (θ − 1)2‖u0‖22

Penalty Method : min
θ,uh

L̃h(θ, uh) = ‖uh − u0‖22 + λ‖Auh − θy‖22

Theorem

The condition number of Aλ is

lim inf
λ→∞

κ(Aλ) ≥ κ(A)2, Aλ =

[
I 0√
λA −

√
λy

]
, y =

[
u0
0

]
and therefore, the condition number of the unconstrained optimization
problem from the penalty method is equal to the the square of the
condition number of the PCL asymptotically.

ADCME ML for Computational Engineering 22 / 31

Physics Constrained Learning for Stiff Problems

ADCME ML for Computational Engineering 23 / 31

PCL: Backbone of the ADCME Infrastructure

ADCME ML for Computational Engineering 24 / 31

Outline

1 Inverse Modeling

2 ADCME: Automatic Differentiation for Computational and
Mathematical Engineering

3 Distributed Computing via MPI

4 Physics Constrained Learning

5 Applications: Constitutive Modeling

ADCME ML for Computational Engineering 25 / 31

Governing Equations

σij ,j︸︷︷︸
stress

+ρ bi︸︷︷︸
external force

= ρ üi︸︷︷︸
velocity

εij︸︷︷︸
strain

=
1

2
(uj ,i + ui ,j)

(2)

Observable: external/body force bi , displacements ui (strains εij can
be computed from ui); density ρ is known.

Unobservable: stress σij .

Data-driven Constitutive Relations: modeling the strain-stress relation
using a neural network

stress =Mθ(strain, . . .) (3)

and the neural network is trained by coupling Eq. 2 and Eq. 3.

ADCME ML for Computational Engineering 26 / 31

Representation of Constitutive Relations

Proper form of constitutive relation is crucial for numerical stability

Elasticity⇒ σ = Cθε

Hyperelasticity ⇒

{
σ =Mθ(ε) (Static)

σn+1 = Lθ(ε
n+1)Lθ(ε

n+1)T (εn+1 − εn) + σn (Dynamic)

Elaso-Plasticity⇒ σn+1 = Lθ(ε
n+1, εn,σn)Lθ(ε

n+1, εn,σn)T (εn+1 − εn) + σn

Lθ =


L1111

L2211 L2222

L3311 L3322 L3333

L2323

L1313

L1212


Weak convexity: LθLT

θ � 0

Time consistency: σn+1 → σn when εn+1 → εn

ADCME ML for Computational Engineering 27 / 31

Modeling Elasto-plasticity

Comparison of different neural network architectures

σn+1 = Lθ(εn+1, εn,σn)Lθ(εn+1, εn,σn)T (εn+1 − εn) + σn

σn+1 = NNθ(εn+1, εn,σn)

σn+1 = NNθ(εn+1, εn,σn) + σn

ADCME ML for Computational Engineering 28 / 31

Modeling Elasto-plasticity: Multi-scale

ADCME ML for Computational Engineering 29 / 31

Other Applications

Time-Lapse Full-Waveform Inversion for Subsurface Flow;

Seismic Inversion;

Viscoelasticity Modeling;

Seismic Inversion;

Stochastic Differential Equations;

Navier Stokes Equations;

. . .

See the following slide for more details:

https://kailaix.github.io/ADCMESlides/2020_11_17.pdf

ADCME ML for Computational Engineering 30 / 31

https://kailaix.github.io/ADCMESlides/2020_11_17.pdf

A General Approach to Inverse Modeling

ADCME ML for Computational Engineering 31 / 31

	Inverse Modeling
	ADCME: Automatic Differentiation for Computational and Mathematical Engineering
	Distributed Computing via MPI
	Physics Constrained Learning
	Applications: Constitutive Modeling

