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Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

The loss function Lh measures the discrepancy between the prediction
uh and the observation uobs, e.g., Lh(uh) = ‖uh − uobs‖2

2.

θ is the model parameter to be calibrated.

The physics constraints Fh(θ, uh) = 0 are described by a system of
partial differential equations or differential algebraic equations
(DAEs); e.g.,

Fh(θ, uh) = A(θ)uh − fh = 0
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Function Inverse Problem

min
f

Lh(uh) s.t. Fh(f , uh) = 0

What if the unknown is a function instead of a set of parameters?

Koopman operator in dynamical systems.

Constitutive relations in solid mechanics.

Turbulent closure relations in fluid mechanics.

...

The candidate solution space is infinite dimensional.
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Machine Learning for Computational Engineering

min
θ

Lh(uh) s.t. Fh(NNθ, uh) = 0 ← Solved numerically

1 Use a deep neural network to approximate the (high dimensional)
unknown function;

2 Solve uh from the physical constraint using a numerical PDE solver;
3 Apply an unconstrained optimizer to the reduced problem

min
θ

Lh(uh(θ))
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Gradient Based Optimization

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0 ⇔ min
θ

Lh(uh(θ))

We can now apply a gradient-based optimization method if we can
calculate a descent direction gk

θk+1 ← θk − αgk
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Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

Deep learning (and many other machine learning techniques) and
numerical schemes share the same computational model: composition
of individual operators.

Mathematical Fact
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Computational Graph for Numerical Schemes

To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “AD language”: computational
graph.

No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.
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ADCME: Computational-Graph-based Numerical
Simulation
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How ADCME works

ADCME translates your high level numerical simulation codes to
computational graph and then the computations are delegated to a
heterogeneous task-based parallel computing environment through
TensorFlow runtime.
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Common Distributed Computing Patterns in DL

L(θ) =
N∑
i=1

(NN(xi ; θ)− yi )
2

Compute Compute Compute

Parameter

Loss Loss Loss

Aggregate Gradient

Compute Compute Compute

Parameter 
Server

Loss Loss Loss

Parameter 
Server

Parameter 
Server

ADCME-MPI Distributed ML for Scientific Computing 14 / 22



Distributed Computing in ML for Computational
Engineering

Consider a time-dependent PDE,
where the state variable

uk = [u
(1)
k u

(2)
k · · · u(P)

k ]

is stored on P machines. Each time
step requires a distributed numerical
solver.

min
θ

L(un)

s.t. A(θ)u2 = h(u1; θ) + g

A(θ)u3 = h(u2; θ) + g

...

A(θ)un = h(un−1; θ) + g
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ADCME-MPI

ADCME-MPI abstracts distributed computing as a node in the
computational graph. The ADCME-MPI model is transparent.

ADCME takes responsibility for MPI communication and gradient
back-propagation across clusters;

users can adapt their single processor codes to a distributed
computing environment with little efforts.
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Example

Consider a simple function:

L(θ) = 1 + θ + θ2 + θ3

Θ

𝜃 𝜃2 𝜃31

𝐿

mpi_bcast

mpi_sum

𝜃 𝜃 𝜃𝜃

Local Computation

using ADCME

mpi_init() # initialize MPI

theta0 = placeholder(1.0)

theta = mpi_bcast(theta0)

l = theta^mpi_rank()

L = mpi_sum(l)

g = gradients(L, theta0)

# initialize a Session

sess = Session(); init(sess)

L_value = run(sess, L)

g_value = run(sess, g)

mpi_finalize() # finalize MPI
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Distributed Optimization

In the ADCME-MPI, we can convert a serial optimizer to a distributed
optimizer by inserting some communication codes:

for k = 1, 2, 3, …
flag = COMPUTE_OBJ
mpi_sync!(flag)
f = compute_objective_function(x)
…
flag = COMPUTE_GRAD
mpi_sync!(flag)
dx = compute_gradient(x)
…
x = x – alpha * dx

flag = OPTIMIZATION_STOP
mpi_sync!(flag)

while true
mpi_sync!(flag)
if (flag==COMPUTE_OBJ)

compute_objective_function(x)
elseif (flag==COMPUTE_GRAD)

compute_gradient(x)
else

break
end

end

Master Worker
flag
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Benchmarks

min
θ

J(θ) :=
∑
i∈I

(u(xi )− ui )
2

s.t. ∇ · (NNθ(x)∇u(x)) = f (x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω
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Reference

For more technical details, benchmarks, or use cases:

AAAI Conference Paper: ADCME MPI: Distributed Machine Learning
for Computational Engineering

Full paper: Distributed Machine Learning for Computational
Engineering using MPI
https://arxiv.org/pdf/2011.01349.pdf

Software documentation:
https://kailaix.github.io/ADCME.jl/dev/
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A General Approach to Inverse Modeling
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