
Physics Based Machine Learning for Inverse Problems

Kailai Xu and Eric Darve
https://github.com/kailaix/ADCME.jl

? The Pathway to Physics Based Machine Learning ?

ADCME Physics Based Machine Learning 1 / 60

https://github.com/kailaix/ADCME.jl

Outline

1 Inverse Modeling

2 Automatic Differentiation

3 Physics Constrained Learning

4 Applications

5 Some Perspectives

ADCME Physics Based Machine Learning 2 / 60

Inverse Modeling

Inverse modeling identifies a certain set of parameters or functions
with which the outputs of the forward analysis matches the desired
result or measurement.

Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.

Physical
Properties

Physical
Laws

Predictions
(Observations)

Inverse
Modeling

……

Optimal Control

Predictive Modeling

Discover Physics

Reduced Order Modeling

ADCME Physics Based Machine Learning 3 / 60

Inverse Modeling

Forward Problem

Inverse Problem

Model
Parameters

Observations

Physical Laws

Physical Laws
Estimation

of
Parameters

Prediction
of

Observations

ADCME Physics Based Machine Learning 4 / 60

Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

The loss function Lh measures the discrepancy between the prediction
uh and the observation uobs, e.g., Lh(uh) = ‖uh − uobs‖2

2.

θ is the model parameter to be calibrated.

The physics constraints Fh(θ, uh) = 0 are described by a system of
partial differential equations. Solving for uh may require solving linear
systems or applying an iterative algorithm such as the
Newton-Raphson method.

ADCME Physics Based Machine Learning 5 / 60

Function Inverse Problem

min
f

Lh(uh) s.t. Fh(f , uh) = 0

What if the unknown is a function instead of a set of parameters?

Koopman operator in dynamical systems.

Constitutive relations in solid mechanics.

Turbulent closure relations in fluid mechanics.

...

The candidate solution space is infinite dimensional.

ADCME Physics Based Machine Learning 6 / 60

Physics Based Machine Learning

min
θ

Lh(uh) s.t. Fh(NNθ, uh) = 0

Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.
Physics based machine learning: the unknown function is
approximated by a deep neural network, and the physical constraints
are enforced by numerical schemes.
Satisfy the physics to the largest extent.

ADCME Physics Based Machine Learning 7 / 60

Gradient Based Optimization

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0 (1)

We can now apply a gradient-based optimization method to (1).
The key is to calculate the gradient descent direction gk

θk+1 ← θk − αgk

Predicted
Data

Observed
Data

Loss Function

Calculate
Gradients

Update
Model Parameters

PDE

Initial and
Boundary Conditions

Optimizer

< tol?
Calibrated Model

ADCME Physics Based Machine Learning 8 / 60

Outline

1 Inverse Modeling

2 Automatic Differentiation

3 Physics Constrained Learning

4 Applications

5 Some Perspectives

ADCME Physics Based Machine Learning 9 / 60

Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

Deep learning (and many other machine learning techniques) and
numerical schemes share the same computational model: composition
of individual operators.

Mathematical Fact

Back-propagation
||

Reverse-mode
Automatic Differentiation

||
Discrete

Adjoint-State Method

ADCME Physics Based Machine Learning 10 / 60

Automatic Differentiation: Computational Graph

A computational graph is a functional description of the required
computation. In the computational graph, an edge represents data,
such as a scalar, a vector, a matrix or a tensor. A node represents a
function (operator) whose input arguments are the the incoming
edges and output values are are the outcoming edges.

How to build a computational graph for z = sin(x1 + x2) + x2
2x3?

ADCME Physics Based Machine Learning 11 / 60

Reverse Mode AD

df (g(x))

dx
= f ′(g(x))g ′(x)

Computing in the reverse order of forward computation.

Each node in the computational graph

Aggregates all the gradients from down-streams
Back-propagates the gradient to upstream nodes.

ADCME Physics Based Machine Learning 12 / 60

Example: Reverse Mode AD

z = sin(x1 + x2) + x2
2x3

ADCME Physics Based Machine Learning 13 / 60

Example: Reverse Mode AD

z = sin(x1 + x2) + x2
2x3

ADCME Physics Based Machine Learning 14 / 60

Example: Reverse Mode AD

z = sin(x1 + x2) + x2
2x3

ADCME Physics Based Machine Learning 15 / 60

Example: Reverse Mode AD

z = sin(x1 + x2) + x2
2x3

ADCME Physics Based Machine Learning 16 / 60

Forward Mode AD

The forward-mode automatic differentiation uses the chain rule to
propagate the gradients.

∂f ◦ g(x)

∂x
= f ′(g(x))g ′(x)

Compute in the same order as function evaluation.

Each node in the computational graph

Aggregate all the gradients from up-streams.
Forward the gradient to down-stream nodes.

ADCME Physics Based Machine Learning 17 / 60

Example: Forward Mode AD

Let’s consider a specific way for computing

f (x) =

 x4

x2 + sin(x)
− sin(x)

x

y1 = x2 y2 = sin x

y5 = − y2y3 = y21 y4 = y1 + y2 (y1, y
′
1) = (x2, 2x)

(y2, y
′
2) = (sin x , cos x)

(y3, y
′
3) = (y2

1 , 2y1y
′
1) = (x4, 4x3)

(y4, y
′
4) = (y1 + y1, y

′
1 + y ′2)

= (x2 + sin x , 2x + cos x)

(y5, y
′
5) = (−y2,−y ′2) = (− sin x ,− cos x)

ADCME Physics Based Machine Learning 18 / 60

Summary

In general, for a function f : Rn → Rm

Mode Suitable for ... Complexity1 Application

Forward m� n ≤ 2.5 OPS(f (x)) UQ
Reverse m� n ≤ 4 OPS(f (x)) Inverse Modeling

There are also many other interesting topics

Mixed mode AD: many-to-many mappings.
Computing sparse Jacobian matrices using AD by exploiting sparse
structures.

Margossian CC. A review of automatic differentiation and its efficient implementation. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019 Jul;9(4):e1305.

1OPS is a metric for complexity in terms of fused-multiply adds.
ADCME Physics Based Machine Learning 19 / 60

Computational Graph for Numerical Schemes

To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “AD language”: computational
graph.

No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.

S2

u ϕ

mt
Ψ2

ϕ(Sn+1
2 − Sn2) − ∇ ⋅ (m2(Sn+1

2)K ∇Ψn2) Δt = (qn2 + qn1
m2(Sn+12)
m1(Sn+12)) Δt

S2

u ϕ

mt
Ψ2

S2

u ϕ

mt
Ψ2

tn tn+1 tn+2

ADCME Physics Based Machine Learning 20 / 60

The Relationship between reverse-mode Automatic
Differentiation and KKT Condition

Consider a concrete PDE-constrained optimization problem:

min
u1,θ

J = f4(u1, u2, u3, u4),

s.t. u2 = f1(u1,θ),

u3 = f2(u2,θ),

u4 = f3(u3,θ).

– f1, f2, f3 are PDE constraints
– f4 is the loss function
– u1 is the initial condition
– θ is the model parameter

u1
u2u1 u3

u4

J

f1 f2 f3

f4

θ

ADCME Physics Based Machine Learning 21 / 60

The Relationship between reverse-mode Automatic
Differentiation and KKT Condition

Solving the constrained optimization method using adjoint-state methods:
The Lagrange multiplier is

L = f4(u1, u2, u3, u4) +λT
2 (f1(u1,θ)− u2) +λT

3 (f2(u2,θ)− u3) +λT
4 (f3(u3,θ)− u4)

Therefore, the first order KKT condition of the constrained PDE
system is

λT
4 =

∂f4
∂u4

λT
3 =

∂f4
∂u3

+ λT
4

∂f3
∂u3

λT
2 =

∂f4
∂u2

+ λT
3

∂f2
∂u2

∂L
∂θ

= λT
2

∂f1
∂θ

+ λT
3

∂f2
∂θ

+ λT
4

∂f3
∂θ
⇒ Sensitivity ∂J

∂θ

ADCME Physics Based Machine Learning 22 / 60

The Relationship between reverse-mode Automatic
Differentiation and KKT Condition

How do we implement reverse-mode automatic differentiation for
computing the gradients?

Consider the operator f2, we need to implement two operators

Forward: u3 = f2(u2,θ)

Backward:
∂J

∂u2
,
∂J

∂θ
= b2

(
∂Jtot

∂u3
, u2,θ

)
∂Jtot

∂u3
is the “total” gradient u3 received from the downstream in the

computational graph.

The backward operator is implemented using the chain rule

∂J

∂u2
=
∂Jtot

∂u3

∂f2
∂u2

∂J

∂θ
=
∂Jtot

∂u3

∂f2
∂θ

What are ∂J
∂u2

, ∂J
∂θ , and ∂Jtot

∂u3
exactly?

ADCME Physics Based Machine Learning 23 / 60

The Relationship between reverse-mode Automatic
Differentiation and KKT Condition

The total gradient u2 received is

∂Jtot

∂u2
=
∂f4
∂u2

+
∂J

∂u2
=
∂f4
∂u2

+
∂Jtot

∂u3

∂f2
∂u2

The dual constraint in the KKT con-
dition

λT
2 =

∂f4
∂u2

+ λT
3

∂f2
∂u2

u1
u2u1 u3

u4

J

f1 f2 f3

f4

θ

∂f4
∂u2

∂J
∂u2

∂Jtot

∂u3

The following equality can be verified

λT
i =

∂Jtot

∂ui

In general, the reverse-mode AD is back-propagating the Lagrange
multiplier (adjoint variables).

ADCME Physics Based Machine Learning 24 / 60

The Relationship between reverse-mode Automatic
Differentiation and KKT Condition

The well-established adjoint-state method is equivalent to solving the
KKT system.

The adjoint-state methods are challenging to implement, mainly due
to the time-consuming and difficult process of deriving the gradients
of a complex system.

Using reverse-mode automatic differentiation is equivalent to solving
the inverse modeling problem using discrete adjoint-state methods,
but in a more manageable way.

Computational graph based implementation also allows for automatic
compilation time optimization and parallelization.

ADCME Physics Based Machine Learning 25 / 60

Outline

1 Inverse Modeling

2 Automatic Differentiation

3 Physics Constrained Learning

4 Applications

5 Some Perspectives

ADCME Physics Based Machine Learning 26 / 60

Challenges in AD

Most AD frameworks only deal
with explicit operators, i.e., the
functions that has analytical
derivatives, or composition of
these functions.

Many scientific computing
algorithms are iterative or
implicit in nature.

Linear/Nonlinear Explicit/Implicit Expression

Linear Explicit y = Ax
Nonlinear Explicit y = F (x)
Linear Implicit Ay = x
Nonlinear Implicit F (x , y) = 0

ADCME Physics Based Machine Learning 27 / 60

Example

An efficient way to do automatic differentiation is to apply the implicit
function theorem. For our example, F (x , y) = x3 − (y3 + y) = 0;
treat y as a function of x and take the derivative on both sides

3x2 − 3y(x)2y ′(x)− y ′(x) = 0⇒ y ′(x) =
3x2

3y2 + 1

The above gradient is exact.

Can we apply the same idea to inverse modeling?

ADCME Physics Based Machine Learning 28 / 60

Example

An efficient way is to apply the implicit function theorem. For our
example, F (x , y) = x3 − (y3 + y) = 0, treat y as a function of x and
take the derivative on both sides

3x2 − 3y(x)2y ′(x)− 1 = 0⇒ y ′(x) =
3x2 − 1

3y(x)2

The above gradient is exact.

Can we apply the same idea to inverse modeling?

ADCME Physics Based Machine Learning 29 / 60

Physics Constrained Learning

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

Assume that we solve for uh = Gh(θ) with Fh(θ, uh) = 0, and then

L̃h(θ) = Lh(Gh(θ))

Applying the implicit function theorem

∂Fh(θ, uh)

∂θ
+
∂Fh(θ, uh)

∂uh

∂Gh(θ)

∂θ
= 0⇒

∂Gh(θ)

∂θ
= −

(∂Fh(θ, uh)

∂uh

)−1 ∂Fh(θ, uh)

∂θ

Finally we have

∂L̃h(θ)

∂θ
=
∂Lh(uh)

∂uh

∂Gh(θ)

∂θ
= −

∂Lh(uh)

∂uh

(∂Fh(θ, uh)

∂uh

∣∣∣
uh=Gh(θ)

)−1 ∂Fh(θ, uh)

∂θ

∣∣∣
uh=Gh(θ)

ADCME Physics Based Machine Learning 30 / 60

Physics Constrained Learning

∂L̃h(θ)

∂θ
= −

∂Lh(uh)

∂uh

(∂Fh(θ, uh)

∂uh

∣∣∣
uh=Gh(θ)

)−1 ∂Fh(θ, uh)

∂θ

∣∣∣
uh=Gh(θ)

Step 1: Calculate w by solving a linear system (never invert the matrix!)

wT =
∂Lh(uh)

∂uh︸ ︷︷ ︸
1×N

(∂Fh

∂uh

∣∣∣
uh=Gh(θ)

)−1

︸ ︷︷ ︸
N×N

Step 2: Calculate the gradient by automatic differentiation

wT ∂Fh

∂θ

∣∣∣
uh=Gh(θ)︸ ︷︷ ︸
N×p

=
∂(wT Fh(θ, uh))

∂θ

∣∣∣∣∣
uh=Gh(θ)

ADCME Physics Based Machine Learning 31 / 60

Physics Constrained Learning

Let us consider an example:

min
θ

L(θ) = ‖uθ − u0‖2

s.t. B(θ)u = y
(2)

Let uθ denotes the solution to the PDE constraint (assume boundary
conditions have been considered in the linear system, e.g., via static
condensation).

L̃(θ) = ‖uθ − u0‖2

ADCME Physics Based Machine Learning 32 / 60

Physics Constrained Learning

1

∂L̃h(θ)

∂θ
= 2(uθ − u0)T

∂uθ
∂θ

2 To compute ∂uθ
∂θ , consider the PDE constraint (θ is a scalar)

B(θ)uθ = y

Take the derivative with respect to θ on both sides

∂B(θ)

∂θ
uθ + B(θ)

∂uθ
∂θ

= 0⇒ ∂uθ
∂θ

= −B(θ)−1∂B(θ)

∂θ
uθ

3 Finally,
∂L̃h(θ)

∂θ
= −2(uθ − u0)TB(θ)−1∂B(θ)

∂θ
uθ

ADCME Physics Based Machine Learning 33 / 60

Physics Constrained Learning

1 Remember: in reverse-mode AD, gradients are always
back-propagated from downstream (objective function) to upstream
(unknowns).

2 The following quantity is computed first:

gT = 2(uθ − u0)TB(θ)−1

which is equivalent to solve a linear system

B(θ)Tg = 2(uθ − u0)

3 In the gradient back-propagation step, a linear system with an adjoint
matrix (compared to the forward computation) is solved.

4 Finally,

∂L̃h(θ)

∂θ
= −2(uθ − u0)TB(θ)−1∂B(θ)

∂θ
uθ = −gT ∂B(θ)

∂θ
uθ

ADCME Physics Based Machine Learning 34 / 60

Physics Constrained Learning

A trick for evaluating gTBuθ: consider g and uθ as independent of θ
in the computational graph, then

gT ∂B(θ)

∂θ
uθ =

∂(gTB(θ)uθ)

∂θ

gTB(θ)uθ is a scalar, thus we can apply reverse-mode AD to

compute ∂(gTB(θ)uθ)
∂θ .

Declaring independence of variables can be done with
tf.stop gradient in TensorFlow or independent in ADCME.

ADCME Physics Based Machine Learning 35 / 60

Methodology Summary

Predicted
Data

Observed
Data

Loss Function

Calculate
Gradients

Update
Model Parameters

PDE

Initial and
Boundary Conditions

Optimizer

Automatic Differentiation

Physics Constrained Learning

Neural
Network

Kernel
Functions

Physical
Parameters

Random
Variables ……

ADCME Physics Based Machine Learning 36 / 60

Physics Constrained Learning: Linear System

Many physical simulations require solving a linear system

A(θ2)uh = θ1

The corresponding PDE constraint in our formulation is

Fh(θ1, θ2, uh) = θ1 − A(θ2)uh = 0

The backpropagation formula

p :=
∂L̃h(θ1, θ2)

∂θ1
=
∂Lh(uh)

∂uh
A(θ2)−1

q :=
∂L̃h(θ1, θ2)

∂θ2
= −∂Lh(uh)

∂uh
A(θ2)−1∂A(θ2)

∂θ2

which is equivalent to

ATpT =

(
∂Lh(uh)

∂uh

)T

q = −p∂A(θ2)

∂θ2

ADCME Physics Based Machine Learning 37 / 60

Methodology Summary

Predicted
Data

Observed
Data

Loss Function

Calculate
Gradients

Update
Model Parameters

PDE

Initial and
Boundary Conditions

Optimizer

Automatic Differentiation

Physics Constrained Learning

Neural
Network

Kernel
Functions

Physical
Parameters

Random
Variables ……

ADCME Physics Based Machine Learning 38 / 60

Outline

1 Inverse Modeling

2 Automatic Differentiation

3 Physics Constrained Learning

4 Applications

5 Some Perspectives

ADCME Physics Based Machine Learning 39 / 60

ADSeismic.jl: A General Approach to Seismic Inversion

Many seismic inversion problems can be solved within a unified
framework.

ADCME Physics Based Machine Learning 40 / 60

ADSeismic.jl: Earthquake Location Example

The earthquake source function is parameterized by (g(t) and x0 are
unknowns)

f (x , t) =
g(t)

2πσ2
exp

(
−||x − x0||2

2σ2

)

ADCME Physics Based Machine Learning 41 / 60

ADSeismic.jl: Benchmark

ADCME makes the heterogeneous computation capability of
TensorFlow available for scientific computing.

ADCME Physics Based Machine Learning 42 / 60

NNFEM.jl: Constitutive Modeling

σij ,j︸︷︷︸
stress

+ρ bi︸︷︷︸
external force

= ρ üi︸︷︷︸
velocity

εij︸︷︷︸
strain

=
1

2
(uj ,i + ui ,j)

(3)

Observable: external/body force bi , displacements ui (strains εij can
be computed from ui); density ρ is known.

Unobservable: stress σij .

Data-driven Constitutive Relations: modeling the strain-stress relation
using a neural network

stress =Mθ(strain, . . .) (4)

and the neural network is trained by coupling (1) and (2).

ADCME Physics Based Machine Learning 43 / 60

NNFEM.jl: Robustic Constitutive Modeling

Proper form of constitutive relation is crucial for numerical stability

Elasticity⇒ σ = Cθε

Hyperelasticity ⇒

{
σ =Mθ(ε) (Static)

σn+1 = Lθ(ε
n+1)Lθ(ε

n+1)T (εn+1 − εn) + σn (Dynamic)

Elaso-Plasticity⇒ σn+1 = Lθ(ε
n+1, εn,σn)Lθ(ε

n+1, εn,σn)T (εn+1 − εn) + σn

Lθ =

L1111

L2211 L2222

L3311 L3322 L3333

L2323

L1313

L1212

Weak convexity: LθLT

θ � 0

Time consistency: σn+1 → σn when εn+1 → εn

ADCME Physics Based Machine Learning 44 / 60

NNFEM.jl: Robustic Constitutive Modeling

Weak form of balance equations of linear momentum

Pi (θ) =

∫
V

ρüiδuidVt +

∫
V

σij(θ)︸ ︷︷ ︸
embedded neural network

δεijdV

Fi =

∫
V

ρbiδuidV +

∫
∂V

tiδuidS

Train the neural network by

L(θ) = min
θ

N∑
i=1

(Pi (θ)− Fi)
2

The gradient ∇L(θ) is computed via automatic differentiation.

ADCME Physics Based Machine Learning 45 / 60

NNFEM.jl: Robustic Constitutive Modeling

ADCME Physics Based Machine Learning 46 / 60

NNFEM.jl: Robustic Constitutive Modeling

Comparison of different neural network architectures

σn+1 = Lθ(εn+1, εn,σn)Lθ(εn+1, εn,σn)T (εn+1 − εn) + σn

σn+1 = NNθ(εn+1, εn,σn)

σn+1 = NNθ(εn+1, εn,σn) + σn

ADCME Physics Based Machine Learning 47 / 60

FwiFlow.jl: Elastic Full Waveform Inversion for subsurface
flow problems

ADCME Physics Based Machine Learning 48 / 60

FwiFlow.jl: Fully Nonlinear Implicit Schemes

The governing equation is a nonlinear PDE

∂

∂t
(φSiρi) +∇ · (ρivi) = ρiqi , i = 1, 2

S1 + S2 = 1

vi = −
Kkri

µ̃i
(∇Pi − gρi∇Z), i = 1, 2

kr1(S1) =
ko
r1S

L1
1

SL1
1 + E1S

T1
2

kr2(S1) =
SL2

2

SL2
2 + E2S

T2
1

For stability and efficiency, implicit methods are the industrial
standards.

φ(Sn+1
2 − Sn

2)−∇ ·
(
m2(Sn+1

2)K∇Ψn
2

)
∆t =

(
qn2 + qn1

m2(Sn+1
2)

m1(Sn+1
2)

)
∆t mi (s) =

kri (s)

µ̃i

It is impossible to express the numerical scheme directly in an AD
framework. Physics constrained learning is used to enhance the AD
framework for computing gradients.

ADCME Physics Based Machine Learning 49 / 60

FwiFlow.jl: Showcase

Task 1: Estimating the permeability from seismic data

B.C. + Two-Phase Flow Equation + Wave Equation ⇒ Seismic Data

Task 2: Learning the rock physics model from sparse saturation data.
The rock physics model is approximated by neural networks

f1(S1; θ1) ≈ kr1(S1) f2(S1; θ2) ≈ kr2(S1)

ADCME Physics Based Machine Learning 50 / 60

FwiFlow.jl: Showcase

Task 3: Learning the nonlocal (space or time) hidden dynamics from
seismic data. This is very challenging using traditional methods (e.g.,
the adjoint-state method) because the dynamics is history dependent.

B.C. + Time-/Space-fractional PDE + Wave Equation ⇒ Seismic Data

Governing Equation σ = 0 σ = 5

C
0 D

0.8
t m = 10∆m

a/a∗ = 1.0000
α = 0.8000

a/a∗ = 0.9109
α = 0.7993

C
0 D

0.2
t m = 10∆m

a/a∗ = 0.9994
α = 0.2000

a/a∗ = 0.3474
α = 0.1826

∂m
∂t = −10(−∆)0.2m

a/a∗ = 1.0000
s = 0.2000

a/a∗ = 1.0378
s = 0.2069

∂m
∂t = −10(−∆)0.8m

a/a∗ = 1.0000
s = 0.8000

a/a∗ = 1.0365
s = 0.8093

ADCME Physics Based Machine Learning 51 / 60

PoreFlow.jl: Inverse Modeling of Viscoelasticity

Multi-physics Interaction of Coupled Geomechanics and Multi-Phase
Flow Equations

divσ(u)− b∇p = 0

1

M

∂p

∂t
+ b

∂εv (u)

∂t
−∇ ·

(
k

Bf µ
∇p
)

= f (x , t)

σ = σ(ε, ε̇)

Approximate the constitutive relation by a neural network

σn+1 − σn = NN θ(σn, εn) + H(εn+1 − εn)

Traction-free
∂u
∂n

= 0

No-flow
∂p
∂n

= 0

Fixed Pressure
p = 0

No-flow
∂p
∂n

= 0
No-flow
∂p
∂n

= 0 Injection Production

x

y

Finite Element
Finite Volume Cell

He1 He2

He3 He4

e

Sensors

ADCME Physics Based Machine Learning 52 / 60

PoreFlow.jl: Inverse Modeling of Viscoelasticity

Comparison with space varying linear elasticity approximation

σ = H(x , y)ε (5)

ADCME Physics Based Machine Learning 53 / 60

PoreFlow.jl: Inverse Modeling of Viscoelasticity

ADCME Physics Based Machine Learning 54 / 60

Outline

1 Inverse Modeling

2 Automatic Differentiation

3 Physics Constrained Learning

4 Applications

5 Some Perspectives

ADCME Physics Based Machine Learning 55 / 60

A Parameter/Function Learning View of Inverse Modeling

Most inverse modeling problems can be classified into 4 categories.
To be more concrete, consider the PDE for describing physics

∇ · (θ∇u(x)) = 0 BC(u(x)) = 0 (6)

We observe some quantities depending on the solution u and want to
estimate θ.

Expression Description ADCME Solution Note

∇ · (c∇u(x)) = 0 Parameter Inverse Problem
Discrete Adjoint

State Method
c is the minimizer of
the error functional

∇ · (f (x)∇u(x)) = 0 Function Inverse Problem
Neural Network

Functional Approximator
f (x) ≈ fw (x)

∇ · (f (u)∇u(x)) = 0 Relation Inverse Problem
Residual Learning

Physics Constrained Learning
f (u) ≈ fw (u)

∇ · ($∇u(x)) = 0 Stochastic Inverse Problem Generative Neural Networks $ = fw (vlatent)

ADCME Physics Based Machine Learning 56 / 60

Scopes, Challenges, and Future Work

Physics based Machine Learning: an innovative approach to inverse
modeling.

1 Deep neural networks provide a novel function approximator that outperforms traditional
basis functions in certain scenarios.

2 Numerical PDEs are not on the opposite side of machine learning. By expressing the
known physical constraints using numerical schemes and approximating the unknown with
machine learning models, we combine the best of the two worlds, leading to efficient and
accurate inverse modeling tools.

Automatic Differentiation: the core technique of physics based machine
learning.

1 The AD technique is not new; it has existed for several decades and many software exists.

2 The advent of deep learning drives the development of robust, scalable and flexible AD
software that leverages the high performance computing environment.

3 As deep learning techniques continue to grow, crafting the tool to incorporate machine
learning and AD techniques for inverse modeling is beneficial in scientific computing.

4 However, AD is not a panacea. Many scientific computing algorithms cannot be directly
expressed by composition of differentiable operators.

ADCME Physics Based Machine Learning 57 / 60

ADCME

ADCME is the materialization of the physics based machine learning
concept.
ADCME allows users to use high performance and mathematical
friendly programming language Julia to implement numerical
schemes, and obtain the comprehensive automatic differentiation
functionality, heterogeneous computing capability, parallelism and
scalability provided by the TensorFlow backend.

https://github.com/kailaix/ADCME.jl

ADCME Physics Based Machine Learning 58 / 60

https://github.com/kailaix/ADCME.jl

A General Approach to Inverse Modeling

ADCME Physics Based Machine Learning 59 / 60

Acknowledgement

NNFEM.jl: Joint work with Daniel Z. Huang and Charbel Farhat.

FwiFlow.jl: Joint work with Dongzhuo Li and Jerry M. Harris.

ADSeismic.jl: Joint work with Weiqiang Zhu and Gregory C.
Beroza.

PoreFlow.jl: Joint work with Alexandre M. Tartakovsky and Jeff
Burghardt.

ADCME Physics Based Machine Learning 60 / 60

	Inverse Modeling
	Automatic Differentiation
	Physics Constrained Learning
	Applications
	Some Perspectives

