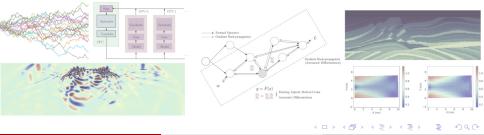
ADCME.jl Physics Based Machine Learning for Inverse Problems

Kailai Xu (许开来) https://github.com/kailaix/ADCME.jl



This work (ADCME.jl and its ecosystem) is a result of collective efforts of many of my Ph.D. collaborators together with our faculty advisors. In chronological order they are:

- Ph.D. collaborators: Daniel (Zhengyu) Huang, Dongzhuo Li, Weiqiang Zhu, and Tiffany (Li) Fan.
- Faculty supervisors: Eric Darve, Charbel Farhat, Jerry M. Harris, and Gregory C. Beroza.
- Many other fellow researchers from Julia language and scientific computing communities, who provide valuable inputs.

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

Outline

Inverse Modeling

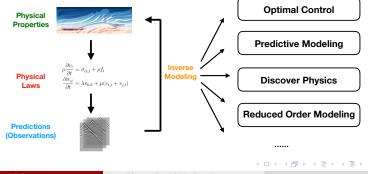
Methodology

4 Some Perspectives

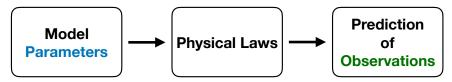
æ

Inverse Modeling

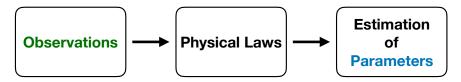
- Inverse modeling (逆建模) identifies a certain set of parameters or functions with which the outputs of the forward analysis matches the desired result or measurement.
- Many real life engineering problems can be formulated as inverse modeling problems: shape optimization for improving the performance of structures, optimal control of fluid dynamic systems, etc.



Forward Problem



Inverse Problem



э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization problem

$$\min_{\theta} L_h(u_h) \quad \text{s.t. } F_h(\theta, u_h) = 0$$

- The loss function L_h measures the discrepancy between the prediction u_h and the observation u_{obs} , e.g., $L_h(u_h) = ||u_h u_{obs}||_2^2$.
- θ is the model parameter to be calibrated.
- The physics constraints $F_h(\theta, u_h) = 0$ are described by a system of partial differential equations. Solving for u_h may require solving linear systems or applying an iterative algorithm such as the Newton-Raphson method.

$$\min_{\mathbf{f}} L_h(u_h) \quad \text{s.t. } F_h(\mathbf{f}, u_h) = 0$$

What if the unknown is a function instead of a set of parameters?

- Koopman operator in dynamical systems.
- Constitutive relations in solid mechanics.
- Turbulent closure relations in fluid mechanics.

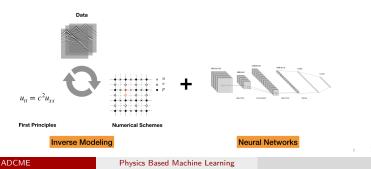
• ...

The candidate solution space is infinite dimensional.

Physics Based Machine Learning

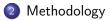
 $\min_{a} L_h(u_h) \quad \text{s.t. } F_h(NN_{\theta}, u_h) = 0$

- Deep neural networks exhibit capability of approximating high dimensional and complicated functions.
- **Physics based machine learning**: the unknown function is approximated by a deep neural network, and the physical constraints are enforced by numerical schemes.
- Satisfy the physics to the largest extent.



Outline

Inverse Modeling



4 Some Perspectives

ADCME

æ

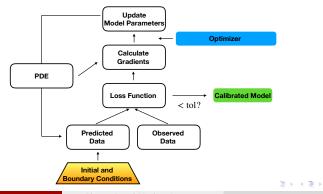
<ロト <回ト < 回ト < 回ト -

Gradient Based Optimization

$$\min_{\theta} L_h(u_h) \quad \text{s.t. } F_h(\theta, u_h) = 0 \tag{1}$$

- We can now apply a gradient-based optimization method to (1).
- The key is to calculate the gradient descent direction g^k

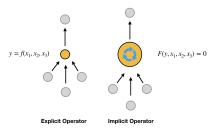
$$\theta^{k+1} \leftarrow \theta^k - \alpha g^k$$



э

Challenges in AD

- Most AD frameworks only deal with explicit operators, i.e., the functions that has analytical derivatives, or composition of these functions.
- Many scientific computing algorithms are iterative or implicit in nature ⇒ Physics Constrained Learning (PCL)



Nonlinear	Implicit	F(x,y)=0
Linear	Implicit	Ay = x
Nonlinear	Explicit	y = F(x)
Linear	Explicit	y = Ax
Linear/Nonlinear	Explicit/Implicit	Expression

Example

• Consider a function $f : x \to y$, which is implicitly defined by

$$F(x, y) = x^3 - (y^3 + y) = 0$$

If not using the cubic formula for finding the roots, the forward computation consists of iterative algorithms, such as the Newton's method and bisection method

$$\begin{array}{lll} y^{0} \leftarrow 0 & & l \leftarrow -M, \ r \leftarrow M, \ m \leftarrow 0 \\ k \leftarrow 0 & \text{while } |F(x, y^{k})| > \epsilon \ \text{do} & c \leftarrow \frac{a+b}{2} \\ \delta^{k} \leftarrow F(x, y^{k})/F'_{y}(x, y^{k}) & \text{if } F(x, m) > 0 \ \text{then} \\ y^{k+1} \leftarrow y^{k} - \delta^{k} & a \leftarrow m \\ k \leftarrow k+1 & \text{else} \\ \text{end while} & b \leftarrow m \\ \text{Return } y^{k} & \text{end if} \\ \text{end while} \\ \text{Return } C = 0 \\ \end{array}$$

An efficient way to do automatic differentiation is to apply the implicit function theorem. For our example, F(x, y) = x³ - (y³ + y) = 0; treat y as a function of x and take the derivative on both sides

$$3x^2 - 3y(x)^2y'(x) - y'(x) = 0 \Rightarrow y'(x) = \frac{3x^2}{3y^2 + 1}$$

The above gradient is exact.

Can we apply the same idea to inverse modeling?

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

Physics Constrained Learning

$$\min_{\theta} L_h(u_h) \quad \text{s.t.} \quad F_h(\theta, u_h) = 0$$

• Assume that we solve for $u_h = G_h(\theta)$ with $F_h(\theta, u_h) = 0$, and then

$$\widetilde{L}_h(\theta) = L_h(G_h(\theta))$$

Applying the implicit function theorem

$$\frac{\partial F_h(\theta, u_h)}{\partial \theta} + \frac{\partial F_h(\theta, u_h)}{\partial u_h} \frac{\partial G_h(\theta)}{\partial \theta} = 0 \Rightarrow \frac{\partial G_h(\theta)}{\partial \theta} = -\left(\frac{\partial F_h(\theta, u_h)}{\partial u_h}\right)^{-1} \frac{\partial F_h(\theta, u_h)}{\partial \theta}$$

Finally we have

$$\frac{\partial \tilde{L}_{h}(\theta)}{\partial \theta} = \frac{\partial L_{h}(u_{h})}{\partial u_{h}} \frac{\partial G_{h}(\theta)}{\partial \theta} = -\frac{\partial L_{h}(u_{h})}{\partial u_{h}} \left(\frac{\partial F_{h}(\theta, u_{h})}{\partial u_{h}} \Big|_{u_{h} = G_{h}(\theta)} \right)^{-1} \left. \frac{\partial F_{h}(\theta, u_{h})}{\partial \theta} \Big|_{u_{h} = G_{h}(\theta)}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Scientific Machine Learning Inverse Modeling Toolkit

ADCME | 💑

High Performance

Easy to Use

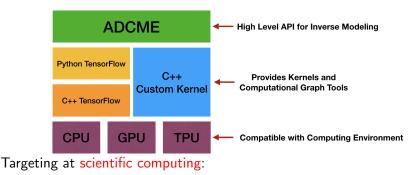
Solves large-scale prob- Provides high-level synlems with TensorFlow tax, which is compatibackend and MPI-based ble with Julia syntax, for distributed optimization implementing numerical for scientific computing. schemes.

Broad Applicability

Constructs multiple physical models using toolkits from ADCME ecosystem and extends capabilities by custom

・ 同 ト ・ ヨ ト ・ ヨ ト

ADCME Architecture

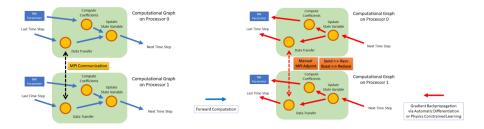


- Sparse linear algebra;
- MPI-based distributed computing;
- Domain specific numerical schemes: seismic inversion (ADSeismic.jl), fluid dynamics (FwiFlow.jl), geomechanics (PoreFlow.jl), solid mechanics (NNFEM.jl), ...

< ロ > < 同 > < 回 > < 回 > < 回 > <

Distributed Optimization

• ADCME also supports MPI-based distributed computing. The parallel model is designed specially for scientific computing.



イロト イポト イヨト イヨト

Estimating Coefficients from Data using ADCME

$$-bu''(x) + u(x) = f(x), \quad x \in [0,1], \quad u(0) = u(1) = 0$$

 $f(x) = 8 + 4x - 4x^2$

- Data: u(0.5) = 1
- Finite difference:

$$-\frac{b^{u_{i+1}+u_{i-1}-2u_i}}{h^2}+u_i=f(x_i)$$

$$\mathbf{B}\mathbf{u}=\mathbf{f}$$

э

イロト イポト イヨト イヨト

Estimating Coefficients from Data using ADCME

using LinearAlgebra using ADCME

```
n = 101 \# number of grid nodes in [0,1]
h = 1/(n-1)
x = LinRange(0,1,n)[2:end-1]
b = Variable(10.0)
A = diagm(0 = >2/h^2 * ones(n-2)),
           -1 = -1/h^2 + ones(n-3), 1 = -1/h^2 + ones(n-3))
B = b*A + I \# I stands for the identity matrix
f = 0, 4*(2 + x - x^2)
u = B \setminus f \# solve the equation using built-in linear solver
ue = u[div(n+1,2)] # extract values at x=0.5
loss = (ue - 1.0)^2
```

```
# Optimization
sess = Session(); init(sess)
BFGS!(sess, loss)
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Domain Specific Numerical Schemes

$$-\nabla \cdot (\kappa \nabla u) = f, \qquad u|_{\partial \Omega} = 0$$

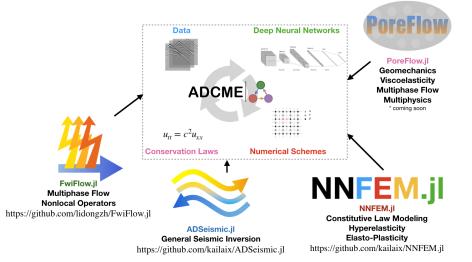
Weak form

$$\int_{\Omega} \kappa \nabla u \cdot \nabla v d\mathbf{x} = \int_{\Omega} f v d\mathbf{x}$$

 The variational problem is transcribed into numerical simulation using domain specific implementations from PoreFlow.jl:

ヘロト 不得 トイヨト イヨト 二日

A General Approach to Inverse Modeling



Physics Based Machine Learning

< □ > < □ > < □ > < □ > < □ > < □ >

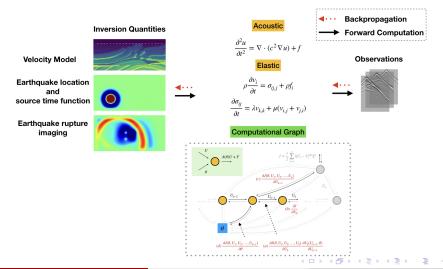
Outline

Inverse Modeling

æ

ADSeismic.jl: A General Approach to Seismic Inversion

• Many seismic inversion problems can be solved within a unified framework.

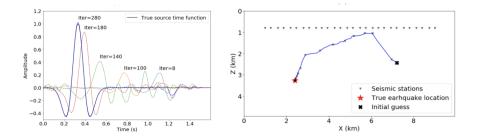


Physics Based Machine Learning

ADSeismic.jl: Earthquake Location Example

• The earthquake source function is parameterized by (g(t) and x₀ are unknowns)

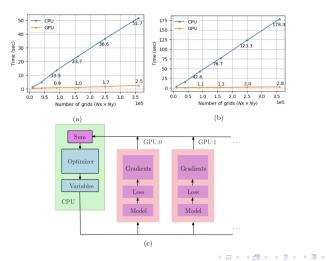
$$f(x,t) = \frac{g(t)}{2\pi\sigma^2} \exp\left(-\frac{||x-x_0||^2}{2\sigma^2}\right)$$



4 A 1

ADSeismic.jl: Benchmark

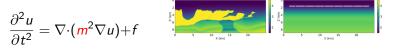
• ADCME makes the heterogeneous computation capability of TensorFlow available for scientific computing.



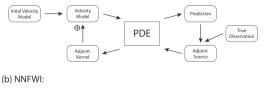
э

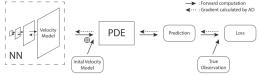
NNFWI: Neural-network-based Full-Waveform Inversion

• Estimate velocity models from seismic observations.



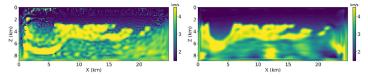
(a) Traditional FWI:



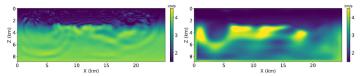


NNFWI: Neural-network-based Full-Waveform Inversion

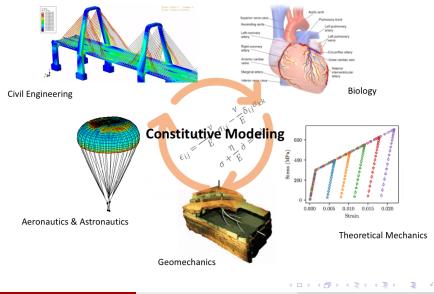
• Inversion results with a noise level $\sigma=\sigma_0$



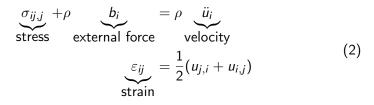
• Inversion results for the same loss function value:



Constitutive Modeling



NNFEM.jl: Constitutive Modeling



- Observable: external/body force b_i, displacements u_i (strains ε_{ij} can be computed from u_i); density ρ is known.
- Unobservable: stress σ_{ij} .
- Data-driven Constitutive Relations: modeling the strain-stress relation using a neural network

stress =
$$\mathcal{M}_{\theta}(strain, \ldots)$$
 (3)

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

and the neural network is trained by coupling (1) and (2).

• Proper form of constitutive relation is crucial for numerical stability

$$\begin{split} & \mathsf{Elasticity} \Rightarrow \boldsymbol{\sigma} = \mathsf{C}_{\boldsymbol{\theta}} \boldsymbol{\epsilon} \\ & \mathsf{Hyperelasticity} \ \Rightarrow \begin{cases} \boldsymbol{\sigma} = \mathcal{M}_{\boldsymbol{\theta}}(\boldsymbol{\epsilon}) & (\mathsf{Static}) \\ \boldsymbol{\sigma}^{n+1} = \mathsf{L}_{\boldsymbol{\theta}}(\boldsymbol{\epsilon}^{n+1})\mathsf{L}_{\boldsymbol{\theta}}(\boldsymbol{\epsilon}^{n+1})^T(\boldsymbol{\epsilon}^{n+1} - \boldsymbol{\epsilon}^n) + \boldsymbol{\sigma}^n & (\mathsf{Dynamic}) \\ \\ & \mathsf{Elaso-Plasticity} \Rightarrow \boldsymbol{\sigma}^{n+1} = \mathsf{L}_{\boldsymbol{\theta}}(\boldsymbol{\epsilon}^{n+1}, \boldsymbol{\epsilon}^n, \boldsymbol{\sigma}^n)\mathsf{L}_{\boldsymbol{\theta}}(\boldsymbol{\epsilon}^{n+1}, \boldsymbol{\epsilon}^n, \boldsymbol{\sigma}^n)^T(\boldsymbol{\epsilon}^{n+1} - \boldsymbol{\epsilon}^n) + \boldsymbol{\sigma}^n \end{split}$$

$$\mathsf{L}_{\boldsymbol{\theta}} = \begin{bmatrix} L_{1111} \\ L_{2211} & L_{2222} \\ L_{3311} & L_{3322} & L_{3333} \\ & & & L_{2323} \\ & & & & L_{1313} \\ & & & & & L_{1212} \end{bmatrix}$$

- Weak convexity: $L_{\theta}L_{\theta}^{T} \succ 0$
- Time consistency: $\sigma^{n+1} o \sigma^n$ when $\epsilon^{n+1} o \epsilon^n$

イロト 不得 トイヨト イヨト

• Weak form of balance equations of linear momentum

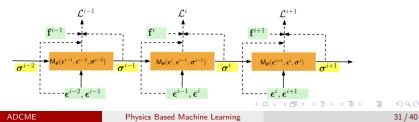
$$P_{i}(\theta) = \int_{V} \rho \ddot{u}_{i} \delta u_{i} dV t + \int_{V} \underbrace{\sigma_{ij}(\theta)}_{\text{embedded neural network}} \delta \varepsilon_{ij} dV$$

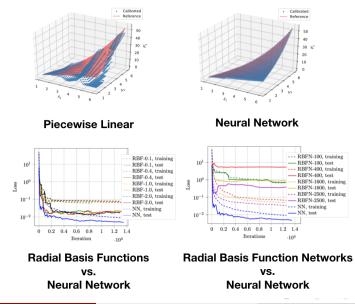
$$F_i = \int_V \rho b_i \delta u_i dV + \int_{\partial V} t_i \delta u_i dS$$

• Train the neural network by

$$L(\theta) = \min_{\theta} \sum_{i=1}^{N} (P_i(\theta) - F_i)^2$$

The gradient $\nabla L(\theta)$ is computed via automatic differentiation.

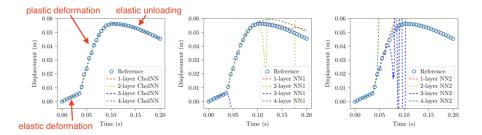




32 / 40

Comparison of different neural network architectures

$$\sigma^{n+1} = \mathsf{L}_{\theta}(\epsilon^{n+1}, \epsilon^{n}, \sigma^{n}) \mathsf{L}_{\theta}(\epsilon^{n+1}, \epsilon^{n}, \sigma^{n})^{\mathsf{T}}(\epsilon^{n+1} - \epsilon^{n}) + \sigma^{n}$$
$$\sigma^{n+1} = \mathsf{NN}_{\theta}(\epsilon^{n+1}, \epsilon^{n}, \sigma^{n})$$
$$\sigma^{n+1} = \mathsf{NN}_{\theta}(\epsilon^{n+1}, \epsilon^{n}, \sigma^{n}) + \sigma^{n}$$



() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

PoreFlow.jl: FEM/FVM on Structured Grids

• Steady-state Navier-Stokes equation

$$(\mathbf{u} \cdot
abla)\mathbf{u} = -rac{1}{
ho}
abla
ho +
abla \cdot (oldsymbol{
u}
abla \mathbf{u}) + \mathbf{g}$$
 $abla \cdot \mathbf{u} = 0$

• Inverse problem are ubiquitous in fluid dynamics:

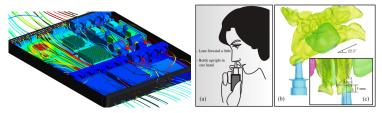
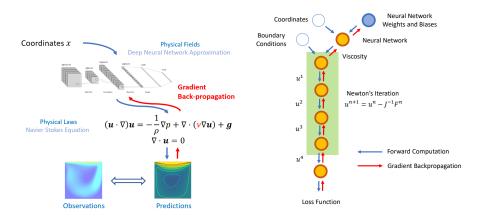


图: Left: electronic cooling; right: nasal drug delivery.

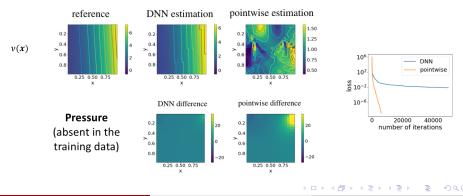
PoreFlow.jl: FEM/FVM on Structure Grids



A D N A B N A B N A B N

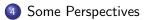
PoreFlow.jl: FEM/FVM on Structure Grids

- Data: (*u*, *v*)
- Unknown: $\nu(\mathbf{x})$ (represented by a deep neural network)
- Prediction: *p* (absent in the training data)
- The DNN provides regularization, which generalizes the estimation better!



Outline

Inverse Modeling



æ

A Parameter/Function Learning View of Inverse Modeling

 Most inverse modeling problems can be classified into 4 categories. To be more concrete, consider the PDE for describing physics

$$\nabla \cdot (\theta \nabla u(x)) = 0 \quad \mathcal{BC}(u(x)) = 0 \tag{4}$$

We observe some quantities depending on the solution u and want to estimate θ .

Expression	Description	ADCME Solution	Note
$\nabla \cdot (\boldsymbol{c} \nabla \boldsymbol{u}(\boldsymbol{x})) = \boldsymbol{0}$	Parameter Inverse Problem	Discrete Adjoint State Method	c is the minimizer of the error functional
$\nabla \cdot (f(x)\nabla u(x)) = 0$	Function Inverse Problem	Neural Network Functional Approximator	$f(x) \approx f_{W}(x)$
$\nabla \cdot (f(u)\nabla u(x)) = 0$	Relation Inverse Problem	Residual Learning Physics Constrained Learning	$f(u) \approx f_W(u)$
$\nabla\cdot(\boldsymbol{\varpi}\nabla u(\boldsymbol{x}))=0$	Stochastic Inverse Problem	Generative Neural Networks	$\varpi = f_w(v_{ ext{latent}})$

Scopes, Challenges, and Future Work

Physics based Machine Learning: an innovative approach to inverse modeling.

- Deep neural networks provide a novel function approximator that outperforms traditional basis functions in certain scenarios.
- 2 Numerical PDEs are not on the opposite side of machine learning. By expressing the known physical constraints using numerical schemes and approximating the unknown with machine learning models, we combine the best of the two worlds, leading to efficient and accurate inverse modeling tools.

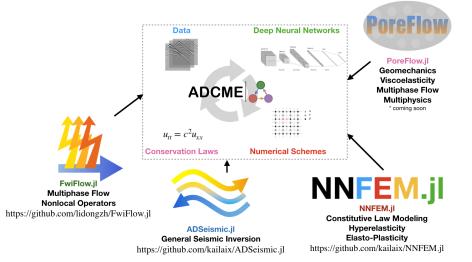
Automatic Differentiation: the core technique of physics based machine learning.

- In the AD technique is not new; it has existed for several decades and many software exists.
- 2 The advent of deep learning drives the development of robust, scalable and flexible AD software that leverages the high performance computing environment.
- 3 As deep learning techniques continue to grow, crafting the tool to incorporate machine learning and AD techniques for inverse modeling is beneficial in scientific computing.
- However, AD is not a panacea. Many scientific computing algorithms cannot be directly expressed by composition of differentiable operators.

3

イロト 不得 トイヨト イヨト

A General Approach to Inverse Modeling



Physics Based Machine Learning

< □ > < □ > < □ > < □ > < □ > < □ >