Calibrating Multivariate Lévy Processes with Neural Networks

Kailai Xu, Eric Darve

ICME, Stanford University

kailaix@stanford.edu darve@stanford.edu

July 2020

Kailai Xu, Eric Darve (Stanford)

Calibrating Lévy Processes with NN

July 2020 1 / 15

1 Introduction to Lévy Processes

2 Inverse Modeling Methodology

Application to Calibrating Lévy Processes

Open Source Software: ADCME

A D N A B N A B N A B N

Gaussian Processes

Random Walk of Pollen Seeds

Robert Brown

Albert Einstein

A D N A B N A B N A B N

- Brownian Motion: $\mathbb{E}(\|x\|^2) \propto t$
- Gaussian Process: Brownian motion with drifts

$$\mathbf{W}_t = \mathbf{b}t + \Sigma \mathbf{B}_t \quad \mathbf{b} \in \mathbb{R}^d, \Sigma \in \mathbb{R}^{d \times d}$$

From Gaussian Proccesses to Lévy Processes

• However, an increasing number of natural phenomena do not fit into the relatively simple Brownian motion framework.

 $\mathbb{E}(\|x\|^2) \propto t^{\beta}$

• Lévy processes generalize Gaussian processes by allowing a heavy-tailed step-length distribution in the random walk. They have been found successful in describing anomalous diffusion.

Modeling with Lévy Processes

Kailai Xu, Eric Darve (Stanford)

Calibrating Lévy Processes with NN

July 2020

A D N A B N A B N A B N

5 / 15

Inverse Modeling Methodology

A D N A B N A B N A B N

Kailai Xu, Eric Darve (Stanford)

Mathematical Formulation

Definition (Lévy Processes)

The paths of Lévy processes X_t can be described by

$$\mathbf{X}_t = \mathbf{b}t + \Sigma \mathbf{W}_t + \sum_{k=1}^{N_t} J_k$$

where $\mathbf{b} \in \mathbb{R}^d$, $\Sigma \in \mathbb{R}^{d \times d}$, \mathbf{W}_t is a standard Brownian motion, N_t is a Poisson process, and J_k is an i.i.d. sequence of random variables, which describes the jump.

The characteristic function of X_t is described by

$$\begin{split} \phi(\boldsymbol{\xi}) &= \mathbb{E}[e^{\mathrm{i}\langle \boldsymbol{\xi}, \mathbf{X}_t \rangle}] = \\ \exp\left[t\left(\mathrm{i}\langle \mathbf{b}, \boldsymbol{\xi} \rangle - \frac{1}{2}\langle \boldsymbol{\xi}, \mathbf{A}\boldsymbol{\xi} \rangle + \int_{\mathbb{R}^d} \left(e^{\mathrm{i}\langle \boldsymbol{\xi}, \mathbf{x} \rangle} - 1 - \mathrm{i}\langle \boldsymbol{\xi}, \mathbf{x} \rangle \mathbf{1}_{\|\mathbf{x}\| \le 1}\right) \nu(d\mathbf{x})\right)\right] \end{split}$$

< 同 > < 三 > < 三

Inverse Modeling

The ultimate goal of inverse modeling is to <u>make predictions</u> of future behaviors, which in turn requires us to <u>find the causes</u> of behaviors.

• Make Predictions \Rightarrow Forward Problem

$$(\mathbf{b}, \mathbf{A}, \nu) \longrightarrow \mathbf{X}_{\Delta t}, \mathbf{X}_{2\Delta t}, \mathbf{X}_{3\Delta t}, \dots$$

• Find Causes \Rightarrow Inverse Problem

$$\mathbf{X}_{\Delta t}, \mathbf{X}_{2\Delta t}, \mathbf{X}_{3\Delta t}, \ldots \longrightarrow (\mathbf{b}, \mathbf{A}, \nu)$$

Match the characteristic function!

July 2020 9 / 15

Neural Networks

- Unique challenge for estimating ν(x): non-smoothness and data-insufficiency (requires regularization).
- Neural network is adaptive to discontinuities and acts as a regularizer.

Introduction to Lévy Processes

4 Open Source Software: ADCME

(日) (四) (日) (日) (日)

Example 1: Multivariate α -stable Process

• The multivariate α -stable process is a special Lévy process with the characteristic function

$$\phi(\boldsymbol{\xi}) = \mathbb{E}\left(\exp(i\Delta t \langle \mathbf{X}, \boldsymbol{\xi} \rangle)\right) = \exp\left(-\Delta t \int_{\mathbb{S}^d} |\langle \mathbf{s}, \boldsymbol{\xi} \rangle|^{\alpha} \Gamma(\mathbf{s}) d\mathbf{s}\right)$$

$$\alpha = 0.75, \Gamma(\mathbf{s}) = \mathbf{1}_{|\mathbf{s}_1| > 0.5}(\mathbf{s}), \text{ and } \Gamma(\mathbf{s}) = \mathbf{1}, \ \mathbf{s} = (\mathbf{s}_1, \mathbf{s}_2), \ \mathbf{s} \in \mathbb{S}^2$$

$$\overset{1}{\underset{a \in \mathcal{A}}{\overset{a \in \mathcal{A}}}{\overset{a \in \mathcal{A}}{\overset{a \in \mathcal{A}}{\overset{a \in \mathcal{A}}{\overset{a$$

Kailai Xu, Eric Darve (Stanford)

July 2020 12 / 15

Example 2: Application to the Stock Market

 Identify the jump diffusion intensity and heteroscedasticity movement of stock prices.

July 2020 13 / 15

Introduction to Lévy Processes

Inverse Modeling Methodology

Application to Calibrating Lévy Processes

(日) (四) (日) (日) (日)

ADCME: A Powerful Inverse Modeling Library for Scientific Machine Learning

Kailai Xu, Eric Darve (Stanford)

Calibrating Lévy Processes with NN

July 2020 15 / 15