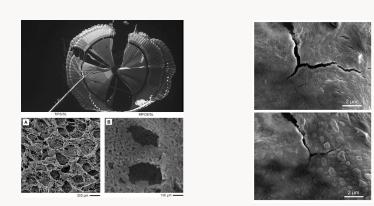
Learning Constitutive Relations using Symmetric Positive Definite Neural Networks

Background



How to model complex constitutive behaviors from observations?

Failure of parachute test; multiscale porous scaffolds; fracture in batteries. Source: NBC News; Luigi Ambrosio; Technologyreview

- It is challenging to model complex material constitutive behavior with conventional mathematical modeling approaches.
- Deep neural networks emerge as an empirically successful function approximator for complex and high dimensional functions.
- To leverage the physics to the largest extent, we couple neural-network-based constitutive relations and partial differential equations.
- Training the neural network requires back-propagating through both the numerical partial differential equation solvers and deep neural networks.
- Most important of all, what conditions should deep neural networks satisfy to stabilize numerical solvers?

Software

NNFEM.jl https://github.com/kailaix/NNFEM.jl

Kailai Xu, Daniel (Zhengyu) Huang, Eric Darve

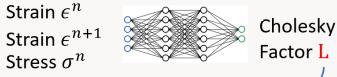
kailaix@stanford.edu, zhengyuh@stanford.edu, darve@stanford.edu **ICME**, Stanford University

SPD-NN

Conventional neural-network-based constitutive relations

> Strain ϵ^n Strain ϵ^{n+1} Stress σ^n

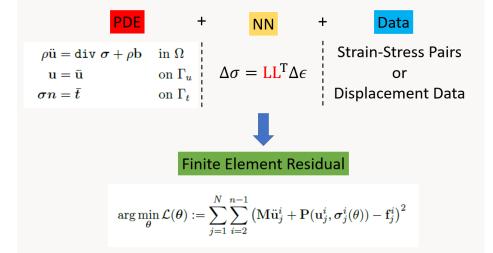
Symmetric positive definite neural networks (SPD-NN)



Incremental form:

 $\Delta \sigma = \mathbf{L} \mathbf{L}^{\mathrm{T}} \Delta \epsilon$

Residual Learning

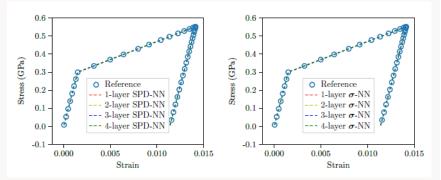


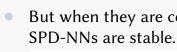
- The time integrator of the PDE resembles a recurrent neural network.
- Automatic differentiation through both PDE solvers and neural networks.

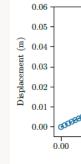
Result

Elasto-plasticity

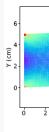
Both SPD-NNs and conventional NNs predict strain-stress curves accurately.



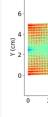




► Hyperelast

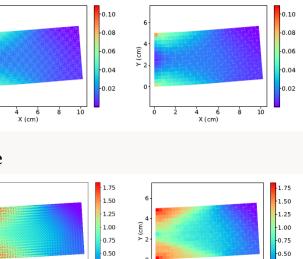


► Multi-scale



But when they are coupled with a numerical solver, only





0.25

0.50