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Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

The loss function Lh measures the discrepancy between the prediction
uh and the observation uobs, e.g., Lh(uh) = ‖uh − uobs‖2

2.

θ is the model parameter to be calibrated.

The physics constraints Fh(θ, uh) = 0 are described by a system of
partial differential equations or differential algebraic equations
(DAEs); e.g.,

Fh(θ, uh) = A(θ)uh − fh = 0
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Function Inverse Problem

min
f

Lh(uh) s.t. Fh(f , uh) = 0

What if the unknown is a function instead of a set of parameters?

Koopman operator in dynamical systems.

Constitutive relations in solid mechanics.

Turbulent closure relations in fluid mechanics.

...

The candidate solution space is infinite dimensional.
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Machine Learning for Computational Engineering

min
θ

Lh(uh) s.t. Fh(Nθ, uh) = 0 ← Solved numerically

1 Use a deep neural network to approximate the (high dimensional)
unknown function;

2 Solve uh from the physical constraint using a numerical PDE solver;
3 Apply an unconstrained optimizer to the reduced problem

min
θ

Lh(uh(θ))
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Gradient Based Optimization

min
θ

Lh(uh(θ))

Steepest descent method:

θk+1 ← θk − αk∇θLh(uh(θk))
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Contributions

Goal

Develop algorithms and tools for solving inverse problems by
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Ecosystem for Inverse Modeling
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Applications
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Applications: Solid Mechanics

Modeling constitutive relations with deep neural networks
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Kailai Xu*, Daniel Z. Huang*, and Eric Darve. Learning constitutive relations using symmetric positive definite neural
networks. Journal of Computational Physics 428 (2021): 110072.

Daniel Z. Huang*, Kailai Xu*, Charbel Farhat, and Eric Darve. Learning constitutive relations from indirect observations
using deep neural networks. Journal of Computational Physics 416 (2020): 109491.
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Applications: Seismic Inversion

ADSeismic: AD + Seismic Inversion

NNFWI: DNN + FWI
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Weiqiang Zhu*, Kailai Xu*, Eric Darve, and Gregory C. Beroza. A general approach to seismic inversion with automatic
differentiation. Computers & Geosciences (2021): 104751.

Weiqiang Zhu*, Kailai Xu*, Eric Darve, Biondo Biondi, and Gregory C. Beroza. Integrating Deep Neural Networks with
Full-waveform Inversion: Reparametrization, Regularization, and Uncertainty Quantification. Submitted.
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Applications: Fluid Dynamics

Tiffany Fan, Kailai Xu, Jay Pathak, and Eric Darve. Solving Inverse Problems in Steady State Navier-Stokes Equations
using Deep Neural Networks. PGAI-AAAI (2020)
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Applications: Geo-mechanics

Learning intrinsic fluid properties from indirect seismic data using
automatic differentiation

Modeling viscoelasticity using deep neural networks

Dongzhuo Li*, Kailai Xu*, Jerry M. Harris, and Eric Darve. Coupled Time-Lapse Full-Waveform Inversion for
Subsurface Flow Problems Using Intrusive Automatic Differentiation. Water Resources Research 56, no. 8 (2020):
e2019WR027032.

Kailai Xu, Alexandre M. Tartakovsky, Jeff Burghardt, and Eric Darve. Learning Viscoelasticity Models from Indirect
Data using Deep Neural Networks. Submitted.
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Applications: Stochastic Processes

Approximating unknown distributions with deep neural networks in a
stochastic process/differential equation.

Adversarial Inverse Modeling (AIM): adversarial training
Physics Generative Neural Networks (PhysGNN): optimal
transport

Generative Neural Network

ρ··ui = σij,j + ρbi

εij = 1
2 (uj,i + ui,j)

σij = Cijklεkl

Physical Field PDE
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Kailai Xu and Eric Darve. Solving Inverse Problems in Stochastic Models using Deep NeuralNetworks and Adversarial
Training. Submitted.

Kailai Xu, Weiqiang Zhu, and Eric Darve. Learning Generative Neural Networks with Physics Knowledge. Submitted.
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Automatic Differentiation

Bridging the technical gap between deep learning and inverse modeling:

Mathematical Fact

Back-propagation
||

Reverse-mode
Automatic Differentiation

||
Discrete

Adjoint-State Method
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Computational Graph for Numerical Schemes

To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “AD language”: computational
graph.

No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.

S2

u ϕ

mt
Ψ2

ϕ(Sn+1
2 − Sn2) − ∇ ⋅ (m2(Sn+1

2 )K ∇Ψn2) Δt = (qn2 + qn1
m2(Sn+12 )
m1(Sn+12 ) ) Δt

S2

u ϕ

mt
Ψ2

S2

u ϕ

mt
Ψ2

tn tn+1 tn+2

Kailai Xu Software Implementation 18 / 50



ADCME: Computational-Graph-based Numerical
Simulation
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How ADCME works

ADCME translates your numerical simulation codes to computational
graph and then the computations are delegated to a heterogeneous
task-based parallel computing environment through TensorFlow
runtime.
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Summary

Mathematically equivalent techniques for calculating gradients:

gradient back-propagation (DNN)
discrete adjoint-state methods (PDE)
reverse-mode automatic differentiation

Computational graphs bridge the gap between gradient calculations in
numerical PDE solvers and DNNs.

ADCME extends the capability of TensorFlow to PDE solvers,
providing users a single piece of software for numerical simulations,
deep learning, and optimization.
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Motivation

Most AD frameworks only deal with explicit
operators, i.e., the functions that has analytical
derivatives, or composition of these functions.

Many scientific computing algorithms are
iterative or implicit in nature.

Linear/Nonlinear Explicit/Implicit Expression

Linear Explicit y = Ax
Nonlinear Explicit y = F (x)
Linear Implicit Ay = x
Nonlinear Implicit F (x , y) = 0
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Example

Consider a function f : x → y , which is implicitly defined by

F (x , y) = x3 − (y3 + y) = 0

If not using the cubic formula for finding the roots, the forward
computation consists of iterative algorithms, such as the Newton’s
method and bisection method

y0 ← 0
k ← 0
while |F (x , yk)| > ε do

δk ← F (x , yk)/F ′y (x , yk)

yk+1 ← yk − δk
k ← k + 1

end while
Return yk

l ← −M, r ← M, m← 0
while |F (x ,m)| > ε do

c ← a+b
2

if F (x ,m) > 0 then
a← m

else
b ← m

end if
end while
Return c
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Example

An efficient way to do automatic differentiation is to apply the implicit
function theorem. For our example, F (x , y) = x3 − (y3 + y) = 0;
treat y as a function of x and take the derivative on both sides

3x2 − 3y(x)2y ′(x)− y ′(x) = 0⇒ y ′(x) =
3x2

3y2 + 1

The above gradient is exact.

Can we apply the same idea to inverse modeling?
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Physics Constrained Learning (PCL)

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

Assume that we solve for uh = Gh(θ) with Fh(θ, uh) = 0, and then

L̃h(θ) = Lh(Gh(θ))

Applying the implicit function theorem

∂Fh(θ, uh)

∂θ
+
∂Fh(θ, uh)

∂uh

∂Gh(θ)

∂θ
= 0⇒

∂Gh(θ)

∂θ
= −

(∂Fh(θ, uh)

∂uh

)−1 ∂Fh(θ, uh)

∂θ

Finally we have

∂L̃h(θ)

∂θ
=
∂Lh(uh)

∂uh

∂Gh(θ)

∂θ
= −

∂Lh(uh)

∂uh

(∂Fh(θ, uh)

∂uh

∣∣∣
uh=Gh(θ)

)−1 ∂Fh(θ, uh)

∂θ

∣∣∣
uh=Gh(θ)
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Penalty Methods

min
f

Lh(uh) s.t. Fh(f , uh) = 0

Penalty Method: parametrize f with fθ (DNNs, linear finite element
basis, radial basis functions, etc.) and incorporate the physical
constraint as a penalty term (regularization, prior, . . . ) in the loss
function.

min
θ, uh

Lh(uh) + λ‖Fh(fθ, uh)‖2
2

+ Easy to implement (no need for differentiating numerical solvers)
− May not satisfy physical constraint Fh(fθ, uh) = 0 accurately;
− High dimensional optimization problem; both θ and uh are variables.
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Physics Constrained Learning for Stiff Problems

PCL is superior for stiff problems.
Consider a model problem

min
θ
‖u − u0‖2

2 s.t. Au = θy

PCL : min
θ

L̃h(θ) = ‖θA−1y − u0‖2
2 = (θ − 1)2‖u0‖2

2

Penalty Method : min
θ,uh

L̃h(θ, uh) = ‖uh − u0‖2
2 + λ‖Auh − θy‖2

2

Theorem

The condition number of Aλ is

lim inf
λ→∞

κ(Aλ) = κ(A)2, Aλ =

[
I 0√
λA −

√
λy

]
, y =

[
u0

0

]
and therefore, the condition number of the unconstrained optimization
problem from the penalty method is equal to the square of the condition
number of the PCL asymptotically.
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Physics Constrained Learning for Stiff Problems
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Summary

Implicit and iterative operators are ubiquitous in numerical PDE
solvers. These operators are insufficiently treated in deep learning
software and frameworks.

PCL helps you calculate gradients of implicit/iterative operators
efficiently.

PCL leads to faster convergence and better accuracy compared to
penalty methods for stiff problems.
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Motivation
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Overview
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Goal

Accelerate convergence and improve accuracy with Hessian infor-
mation

Challenge

Calculate Hessians for coupled systems of PDEs and DNNs
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Trust Region vs. Line Search

Trust Region

Approximate f (xk + p) by a model
quadratic function

mk(p) = fk + gT
k p +

1

2
pTBkp

fk = f (xk), gk = ∇f (xk),Bk = ∇2f (xk)

Solve the optimization problem within a
trust region ‖p‖ ≤ ∆k

pk = arg min
p

mk(p) s.t. ‖p‖ ≤ ∆k

If decrease in f (xk + pk) is sufficient, then
update the state xk+1 = xk + pk ; otherwise,
xk+1 = xk and improve ∆k .

Line Search

Determine a descent
direction pk

Determine a step size αk

that sufficiently reduces
f (xk + αkpk)

Update the state
xk+1 = xk + αkpk
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Second Order Physics Constrained Learning

Consider a composite function with a vector input x and scalar output

v = f (G (x)) (1)

Define

f,k(y) =
∂f (y)

∂yk
, f,kl(y) =

∂2f (y)

∂yk∂yl

Gk,l(x) =
∂Gk(x)

∂xl
, Gk,lr (x) =

∂2Gk(x)

∂xl∂xr

Differentiate Equation (1) with respect to xi

∂v

∂xi
= f,kGk,i (2)

Differentiate Equation (2) with respect to xj

∂2v

∂xi∂xj
= f,krGk,iGr ,j + f,kGk,ij
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Second Order Physics Constrained Learning

In the vector form,

∇2v = (∇G )T∇2f (∇G ) +∇2(ḠTG ) Ḡ = ∇f

Consider a function composed of a sequence of computations

v = Φm(Φm−1(· · · (Φ1(z))))

1: Initialize H ← 0
2: for k = m − 1,m − 2, . . . , 1 do
3: Define f := Φm(Φm−1(· · · (Φk+1(·)))), G := Φk

4: Calculate the gradient (Jacobian) J ← ∇G
5: Extract Ḡ from the saved gradient back-

propagation data
6: Calculate Z = ∇2(ḠTG )
7: Update H ← JTHJ + Z
8: end for
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Numerical Benchmark

We consider the heat equation in Ω = [0, 1]2

∂u

∂t
= ∇ · (κ(x , y)∇u)) + f (x , y) x ∈ Ω

u(x , y , 0) = x(1− x)y2(1− y)2 (x , y) ∈ Ω

u(x , y , t) = 0 (x , y) ∈ ∂Ω

The diffusivity coefficient κ and exact solution u are given by

κ(x , y) = 2x2 − 1.05x4 + x6 + xy + y2

u(x , y , t) = x(1− x)y2(1− y)2e−t

We learn a DNN approximation to κ using full-field observations of u

κ(x , y) ≈ Nθ(x , y)
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Convergence

The optimization problem is given by

min
θ

L(θ) =
∑
n

∑
i ,j

(
un+1
i ,j − uni ,j

∆t
− Fi ,j(u

n+1; θ)− f n+1
i ,j

)2

Fi ,j(u
n+1; θ): the 4-point finite difference approximation to the

Laplacian ∇ · (Nθ∇u).
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Effect of PDEs

Nθ → (PDE Solver)→ Loss Function

Consider the loss function excluding the effects of PDEs

l(θ) =
∑
i ,j

(Nθ(xi ,j , yi ,j)− κ(xi ,j , yi ,j))2

Eigenvalue magnitudes of ∇2L(θ) and ∇2l(θ)
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Effect of PDEs

Most of the eigenvalue directions at the local landscape of loss
functions are “flat” ⇒ “effective degrees of freedom (DOFs)”.

Physical constraints (PDEs) further reduce effective DOFs:

BFGS LBFGS Trust Region

DNN-PDE 31 22 35
DNN Only 34 41 38
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Effect of Widths and Depths

The ratio of zero eigenvalues increases as

the number of hidden layers increase for a fixed number (20) of
neurons per layer (unit: %)

# Hidden Layers LBFGS BFGS Trust Region

1 76.54 72.84 77.78
2 98.2 94.41 93.21
3 98.7 98.15 96.09

the number of neurons per layer increases for a fixed number (3) of
hidden layers (unit: %)

# Neurons per Layer LBFGS BFGS Trust Region

5 93.83 85.19 69.14
10 97.7 83.52 89.66
20 96.2 97.39 96.42
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Effect of Widths and Depths: Conjecture

Implications for overparametrization: the minimizer lies on a
relatively higher dimensional manifold of the parameter space.

Conjecture: overparameterization makes the optimization easier due
to a larger chance of hitting the minimizer manifold.
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Summary

Trust region methods converge significantly faster compared to first
order/quasi second order methods by leveraging Hessian information.

Second order physics constrained learning helps you calculate Hessian
matrices efficiently.

The local minimum of DNNs have small effective degrees of freedom
compared to DNN sizes.
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Conclusion

min
f

Lh(uh) s.t. Fh(f , uh) = 0

3 Develop algorithms and tools for solving inverse problems by
combining DNNs and numerical PDE solvers.
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A General Approach to Inverse Modeling
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Supporting Materials
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Limitations and Future Work

Computational cost

A PDE needs to be solved per inner iteration in the optimization
process
Calculating Hessians are very expensive: exploit the Hessian structure
to accelerate computations

Convergence and accuracy of DNNs

Ill-posed inverse problems

Regularization
Bayesian approach

Robustness to noise

Theoretical investigations
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Major AD Frameworks

TensorFlow 1.x PyTorch JAX

Computational
graph

static and explicit dynamic and
explicit

dynamic and implicit

Programming declarative imperative imperative

Focus graph optimiza-
tion, AD

AD AD

Computing CPU/GPU/TPU CPU/GPU,
TPU(-)

CPU/GPU/TPU

Highlights

• graph optimiza-
tions and manipu-
lations
• optimized tensor
libraries

intuitive APIs

• just-in-time com-
pilation from Python
functions to XLA-
optimized kernels
• arbitrary composi-
tion of pure functions
• high order deriva-
tives
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AD Frameworks

z = x * y
z = x + y

y = A * x
y = A \ x

y = compute_fem_
stiffness_matrix(x, mesh)

Operator

Arithmetic Tensor SimulationGranularity

MeDiPack

CoDiPack

Adept

TAPENADE
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Static Graph versus Dynamic Graph

Static Graph Dynamic Graph

Pros

• graph optimizations, rewrit-
ing, and simplifications;
• easy to reason about and an-
alyze

• intuitive: run to define.

Cons • compiled-language-like: de-
fine to run.

• difficult to reason about and
optimize;
• encourage trial and error in-
stead of computations itself.
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