Machine Learning for Computational Engineering J

Kailai Xu
Stanford University

Kailai Xu

Outline

© Inverse Modeling

© Software Implementation

© First Order Physics Constrained Learning
@ Second Order Physics Constrained Learning

© Conclusion

Kailai Xu Inverse Modeling

2 /50

Inverse Modeling

Forward Problem

Prediction
— | Physical Laws | —> of
Observations

Model
Parameters

Inverse Problem

Estimation
Observations | = | Physical Laws | —> of
Parameters

Kailai Xu Inverse Modeling 3 /50

Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

mein Lp(up) s.t. Fp(6,up) =0

@ The loss function L, measures the discrepancy between the prediction
up and the observation wohs, €.g., La(up) = ||up — tobs|3.

@ 0 is the model parameter to be calibrated.

@ The physics constraints Fx(6, up) = 0 are described by a system of
partial differential equations or differential algebraic equations
(DAEs); e.g.,

Fh(g, Uh) = A(@)Uh - fh =0

Kailai Xu Inverse Modeling 4 /50

Function Inverse Problem

mfin Lh(uh) s.t. Fh(f, uh) =0

What if the unknown is a function instead of a set of parameters?
@ Koopman operator in dynamical systems.
@ Constitutive relations in solid mechanics.
@ Turbulent closure relations in fluid mechanics.

The candidate solution space is infinite dimensional.

Kailai Xu Inverse Modeling 5/ 50

Machine Learning for Computational Engineering

m@in Lp(up) s.t. ’ Frn(Ng, up) =0 ‘ < Solved numerically

@ Use a deep neural network to approximate the (high dimensional)

unknown function;
@ Solve up from the physical constraint using a numerical PDE solver;
© Apply an unconstrained optimizer to the reduced problem

mein Lp(up(0))

— 2,
Uy = CTUy

First Principles Numerical Schemes

Inverse Modeling Neural Networks

Kailai Xu Inverse Modeling

6/ 50

Gradient Based Optimization

mein Lp(un(0))
@ Steepest descent method:

Ort1 Ok — uVolLn(un(0k))

— - Update
Model Parameters
t «— Optimizer
Loss Function —— Calibrated Model

< tol?
Predicted Observed
Data Data
Initial and

Boundary Conditions

Calculate
Gradients

Il

\
/

Y

Kailai Xu Inverse Modeling

7/ 50

Contributions

Goal

Develop algorithms and tools for solving inverse problems by
combining DNNs and numerical PDE solvers.

-

Kailai Xu

— Update
Model Parameters|
t «— Optimizer

Calculate

=)~

Loss Function — Calibrated Model
< tol?

II

\
/

Predicted
Data

Initial and
Boundary Conditions

—

Observed
Data

_G

Inverse Modeling 8 /50

Kailai Xu

Contribution 3
2nd Order Physics Constrained Learning
Accelerating Convergence and Improving Accuracy
—
Model Parameters|
1

Optimizer
m
L_J -

-

with Hessian Information

—— Calibrated Model
/ < tol?
Predicted Observed
[Data] Data]
1
Initial and
Boundary Conditions
Contribution 2
1st Order Physics Constrained Learning
Calculating Gradients for Implicit & Iterative Operators

o
Software Implementation

DA

9/50

Ecosystem for Inverse Modeling

ADSeismic
-
AdFem ~=S€ismic| | =

ADCME ‘ ® | FQ ‘t}fr:;

ADCME|

Getting Started

ion in AdF{

Kailai Xu Software Implementation

Documentations

Applications

1=
== i
= Geomechanics

Fluid Dynamics |

TN /

_ ‘Stochastic Processes
Applications
ol 4

il 7\
Solid Mechanics |

T

—y

Kailai Xu

=] F
Software Implementation

See the publication list at: https://github.com/ka.iIari'x/'l'-{DCME.iI

DA

11/ 50

Applications: Solid Mechanics

@ Modeling constitutive relations with deep neural networks

175 175
6 1.50 6 1.50
L 1.25 B 1.25
g 1.00 E 1.00
>2 0.75 >2 0.75
0.50 0.50

0 0
0.25 0.25

0 2 4 6 8 10 0 2 i 6 8 10
X (cm) X (cm)

Kailai Xu*, Daniel Z. Huang*, and Eric Darve. Learning constitutive relations using symmetric positive definite neural
networks. Journal of Computational Physics 428 (2021): 110072.

Daniel Z. Huang*, Kailai Xu*, Charbel Farhat, and Eric Darve. Learning constitutive relations from indirect observations
using deep neural networks. Journal of Computational Physics 416 (2020): 109D491.

Kailai Xu Software Implementation 12 /50

Applications: Seismic Inversion

@ ADSeismic: AD + Seismic Inversion
o NNFWI: DNN + FWI

<+ Backpropagation
Acoustic o

Inversion Quantities. — Forward Computation

P .
GV @S
Velocity Model ! Observations
i — — Elastic
Earthquake location P P ool P
and a =
source time function i,

U vt oy)
=t b+

Earthquake rupture
imaging ‘

2 3 s To
Weiqiang Zhu*, Kailai Xu*, Eric Darve, and Gregory C. Beroza. A general approach to seismic inversion with automatic
differentiation. Computers & Geosciences (2021): 104751.

Weiqiang Zhu*, Kailai Xu*, Eric Darve, Biondo Biondi, and Gregory C. Beroza. Integrating Deep Neural Networks with

Full-waveform Inversion: Reparametrization, Regularization, and Uncertainty Quantification. Submitted.

Kailai Xu Software Implementation

13 / 50

Applications: Fluid Dynamics

Coordinates x —\

Physical Fields

Deep Neural Network Approximation
| . '?ﬁ‘%j “, \\
Gradient

,\\‘Back-propagatlon
Physical Laws

Navier Stokes Equation

(u V)u——;Vp+V-(vVu)+g
V-u=0

¥ —

Observations

Kailai Xu

Predictions

using Deep Neural Networks. PGAI-AAAI (2020)

Tiffany Fan, Kailai Xu, Jay Pathak, and Eric Darve. Solving Inverse Problems in Steady State Navier-Stokes Equations

o F
Software Implementation

14 / 50

Applications: Geo-mechanics

@ Learning intrinsic fluid properties from indirect seismic data using
automatic differentiation
@ Modeling viscoelasticity using deep neural networks

J=x¥

d A L covosarososees
Objective Function o

- Observed Data
L r——)
[umﬁ I’ "\\»\‘

Simulated D: Qbﬂu"

innlated Data 8 . Towgrgot

d, = Q) i b oTovge,

S TR B

Rock Dl Mo (e - -— e

Rock Physics

i ki
i N
~ ot s

Multiphase Flow

o, N
*Ceo,, LB O N
Estimated Permeability 6) 6565636 TETETOT
K 0 02 04 06 08 1 0 02 04 05 08 1
Time Time

(b) NN-based Viscoelasticity

(a) Space Varying Linear Elasticity
1072 1072

Lososo0osoee P =

Fast Time

Slow Time

Dongzhuo Li*, Kailai Xu*, Jerry M. Harris, and Eric Darve. Coupled Time-Lapse Full-Waveform Inversion for
Subsurface Flow Problems Using Intrusive Automatic Differentiation. Water Resources Research 56, no. 8 (2020):
€2019WR027032.

Kailai Xu, Alexandre M. Tartakovsky, Jeff Burghardt, and Eric Darve. Learning Viscoelasticity Models from Indirect
Data using Deep Neural Networks. Submitted.

Kailai Xu Software Implementation 15 / 50

Applications: Stochastic Processes

@ Approximating unknown distributions with deep neural networks in a
stochastic process/differential equation.
o Adversarial Inverse Modeling (AIM): adversarial training
o Physics Generative Neural Networks (PhysGNN): optimal
transport

Mathematical Models Estimations
Physics Knowledge

F(wi) |=——
1 " Pl 3. ~
| & | S““‘1’1“/' /Snmplv / %@* ©.1)

Observation —
Latent Vectors w u,
Additonal Randomness Iy i
i Physical Process 7
Backprop [IBSSIFURGHOR Stochastic Inputs I b
OSSR IR Observations d
AN <4 es
QO+ T | 1
Prediction |

Generative Neural Network

Physical Field PDE

Kailai Xu and Eric Darve. Solving Inverse Problems in Stochastic Models using Deep NeuralNetworks and Adversarial
Training. Submitted.

Kailai Xu, Weiqgiang Zhu, and Eric Darve. Learning Generative Neural Networks with Physics Knowledge. Submitted.

Kailai Xu Software Implementation 16 / 50

Automatic Differentiation

Bridging the technical gap between deep learning and inverse modeling:

Neural Network Layers

Mathematical Fact O 8 O ’
-Hoaoﬂw- =
- ; o o
Back-propagation o o o

Reverse-mode

Automatic Differentiation "

! ' v
< < <oeeee [<o
Parameter | —ip —_— — —_ «—> [Observation|

Discrete ; !, Fowartcatosaion
A dj oint-State Method L= == S b e et

Kailai Xu Software Implementation 17 / 50

Computational Graph for Numerical Schemes

@ To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “"AD language”: computational
graph.

@ No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.

” . " n (S5
[(p(szﬂ_sz)—v-(mz(szﬂ)]{vwz)m (q2 q pYC At

R

¢ ¢ ¢

\ /'O‘I‘2 \ /0‘1’2 \ /O‘I’ZO

t t

n n+1 trz+2

Kailai Xu Software Implementation 18 / 50

ADCME: Computational-Graph-based Numerical

Simulation
ADCME
Computational Graph

Custom Optimizers Output Custom Operators
CustomOptimizer 4[J customop()
BFGS i O cuba &

Gradient / S
Ipopt H \ O Fortran Kernel [|
NLopt O :O Checkpointing 41:1: o
Snopt O FPGA e

O MUMPS Parallel Solver
--- input [l [| [| '
Numerical PDE Schemes, Linear Solvers, MPI Operations, Optimization Solvers, Neural Networks, ...
Kailai Xu Software Implementation

19 / 50

How ADCME works

o ADCME translates your numerical simulation codes to computational
graph and then the computations are delegated to a heterogeneous
task-based parallel computing environment through TensorFlow

runtime.
ADCME l
¢-®
> ai = GPU
MJ F' 5’,) TPU
\ e
- o~ Se Smlc Heterogenous
AD-Capable l Task-based
Numerical Simulator Engines Parallel Runtime

Kailai Xu Software Implementation 20 / 50

Summary

@ Mathematically equivalent techniques for calculating gradients:
o gradient back-propagation (DNN)
o discrete adjoint-state methods (PDE)
e reverse-mode automatic differentiation
@ Computational graphs bridge the gap between gradient calculations in
numerical PDE solvers and DNNs.
@ ADCME extends the capability of TensorFlow to PDE solvers,
providing users a single piece of software for numerical simulations,
deep learning, and optimization.

Kailai Xu Software Implementation 21 / 50

Contribution 3

2nd Order Physics Constrained Learning
Accelerating Convergence and Improving Accuracy
with Hessian Information

-

Optimizer

— Calibrated Model
/ \ < tol?
{ Predicted

Observed
Data } { Data }
1
Initial and
-
Contribution 1
Software Implementation
ADCME: Gradient Calculation and
Inverse Modeling Pipelining

Kailai Xu

o
First Order Physics Constrained Learning

DA

22 /50

Motivation

. . DNN: Explicit
@ Most AD frameworks only deal with explicit

b

operators, i.e., the functions that has analytical , \
derivatives, or composition of these functions. N\

@ Many scientific computing algorithms are x > O -y
iterative or implicit in nature. y=a(Wx +b)

Numerical Schemes:
Implicit, Iterative

Linear/Nonlinear Explicit/Implicit Expression

Linear Explicit y = Ax 6 ~

Nonlinear Explicit y = F(x)

Linear Implicit Ay = x f— O Y
Nonlinear Implicit F(x,y)=0 AW, 0)y=f

Kailai Xu First Order Physics Constrained Learning 23 /50

Example

o Consider a function f : x — y, which is implicitly defined by

Fx,y)=x*=(y’+y) =0

If not using the cubic formula for finding the roots, the forward
computation consists of iterative algorithms, such as the Newton'’s
method and bisection method

y0<_0 [« —M, r< M, m+20
k « 0 while |F(x, m)| > € do
while |F(x, y%)| > ¢ do c« 24P
5k%F(X7yk)/F)//(X,yk) if F(X,m)>0then
YRl kg a+m
k—k+1 else
end while b m
Return y* end if
end while
Return ¢

Kailai Xu First Order Physics Constrained Learning 24 / 50

Example

@ An efficient way to do automatic differentiation is to apply the implicit
function theorem. For our example, F(x,y) = x> — (y3 +y) = 0;
treat y as a function of x and take the derivative on both sides

3x2
3y2+1

3¢~ 3y(x)PY(x) — ¥'(x) = 0= y/(x) =

The above gradient is exact.

Can we apply the same idea to inverse modeling?

Kailai Xu First Order Physics Constrained Learning 25 / 50

Physics Constrained Learning (PCL)
mgin Lp(up) s.t. Fp(0,up) =0

@ Assume that we solve for up = Gp(6) with Fu(6, up) = 0, and then

Ln(0) = La(Gh(9))

@ Applying the implicit function theorem

BF/,(G, uh) + th(Q, uh) f)Gh(e) — 0= 66},(9) _ _(BF/,(G, uh))*l 8Fh(9, uh)
o0 Oup, a0 00 Oup o0

@ Finally we have

)—1 OF(8, up)
up=Gp(0) 00

8[},(9) _ 8Lh(uh) 8Gh(0) _ _6Lh(uh) (th(G,uh)

00 B Buh o0 - Ouh 8Uh

up=Gp(0)

Kailai Xu First Order Physics Constrained Learning 26 / 50

Penalty Methods

mfin Lp(up) s.t. Fp(f,up) =0

@ Penalty Method: parametrize f with fy (DNNs, linear finite element
basis, radial basis functions, etc.) and incorporate the physical
constraint as a penalty term (regularization, prior, ...) in the loss

function.
min Ly(un) + Al Fa(fo, un) 3
s Un

+ Easy to implement (no need for differentiating numerical solvers)
— May not satisfy physical constraint F,(fy, uy) = 0 accurately;
— High dimensional optimization problem; both 6 and uy are variables.

Kailai Xu First Order Physics Constrained Learning 27 / 50

Physics Constrained Learning for Stiff Problems

@ PCL is superior for stiff problems.
@ Consider a model problem

mein |u— wol|3 s.t. Au= 6y
PCL: miny(6) = 047y — wl3 = (6~ 1)?]uol3
Penalty Method : rénin Lo(8, up) = |Jun — woll3 + M| Aup — 0y |3
;U

The condition number of Ay is

O T Y (]

and therefore, the condition number of the unconstrained optimization
problem from the penalty method is equal to the square of the condition
number of the PCL asymptotically.

Kailai Xu First Order Physics Constrained Learning 28 / 50

Physics Constrained Learning for Stiff Problems

Parameter Inverse Problem

Au+kig(x)u=0
g(x) = 5x2 + 2y

9o (x) = 6,%% + 6,y% + O3xy
+0,x + 6y + 64

Approximate Unknown Functions
using DNNs

=V (f(w)Vu) = h(x)

fa = [MV GO0

Kailai Xu

NN (u; 92)]

10!
107
5 107%
o
107° +
— PM, freq=0.5
. | =PM, freq=0.75
107" 7 —PM, freq=1.0
T
0 02 04 06 08 1 13
Iterations
10" 4 \/\7 ——
& 4y
_E 10 |
2 10724
£ 1070
1074

First Order Physics Constrained Learning

10-*
—PCL, freq=0.5

1077 - PCL, freq=1.0

L

0 2 4 6 8 10 12
Iterations

— PM. Ul("je)(3ﬁ(“)l
— PM. !1§ujf7 3(z(u
=== PCL. | f1(u:6)— f1 ()|

L)
T AC: d)uiz(u)\

Sa(u)

29 / 50

Summary

@ Implicit and iterative operators are ubiquitous in numerical PDE
solvers. These operators are insufficiently treated in deep learning
software and frameworks.

@ PCL helps you calculate gradients of implicit/iterative operators
efficiently.

@ PCL leads to faster convergence and better accuracy compared to
penalty methods for stiff problems.

Kailai Xu First Order Physics Constrained Learning 30 / 50

Kailai Xu

— Update
Model Parameters|
i —

u DE_J /'

Calibrated Model
/ \ < tol?
Predicted Observed
{ Data] Data]
1
Initial and
N N Boundary Conditions
Contribution 1
Software Implementation
ADCME: Gradient Calculation and
Inverse Modeling Pipelining

Contribution 2
1st Order Physics Constrained Learning
Calculating Gradients for Implicit & Iterative Operators

m]

)
Second Order Physics Constrained Learning

DA

31/50

Motivation

Gradient-based Optimization

A 4
1%t Order “1.5t Order” 2nd Order
Trust Region Method
Kailai Xu Second Order Physics Constrained Learning 32 /50

Overview

Loss Function

—— BFGS
ADAM

107 —— LBFGS
—— Trust Region
] 1000 2000 3000 4000 5000
Iterations

Goal

Accelerate convergence and improve accuracy with Hessian infor-

mation
Challenge

Calculate Hessians for coupled systems of PDEs and DNNs

Kailai Xu Second Order Physics Constrained Learning 33 /50

Trust Region vs. Line Search

Trust Region

@ Approximate f(xx + p) by a model
quadratic function

1
my(p) = fx +ngp + EpTBkP

fc = f(xk), gk = VF(xi), B = V2 (x«)

@ Solve the optimization problem within a
trust region ||p|| < Ag

pk = arg mpin mi(p) st |p|l < Ak
@ If decrease in f(xx + px) is sufficient, then

update the state xx11 = Xk + pk; otherwise,
Xk+1 = Xk and improve Ay.

Kailai Xu Second Order Physics Constrained Learning

oDy K
Xk Pk
Trust Region Line Search

Line Search

@ Determine a descent
direction py

@ Determine a step size ay
that sufficiently reduces

f(xk + apk)

@ Update the state
Xk+1 = Xk + Qe Pi

34 /50

Second Order Physics Constrained Learning

o Consider a composite function with a vector input x and scalar output

v =f(G(x)) (1)
o Define
of (y O*f(y)
Fily) = fuly) =
) a7) Ayi Oy,
_ 8Gk(X) o asz(X)
Gri(x) = “ox G ir(x) = Oxdx,
o Differentiate Equation (1) with respect to x;
ov
— = 4Gy 2
ox; k=, ()
o Differentiate Equation (2) with respect to x;
0?v
= f1rGi.iGrj+ fi Gy jj
0x;0x; r i G Tk G

Kailai Xu Second Order Physics Constrained Learning 35 /50

Second Order Physics Constrained Learning

In the vector form,

Vv = (VG) V3 (VG)+V*(GTG) G=Vf

@ Consider a function composed of a sequence of computations

v=>0,(Pp_1(-- - (P1(2))))

1: Initialize H < 0

2: fork=m—-—1,m—2,...,1do s
3: Define f := ¢m(¢mf1(- c (¢k+1(~)))), G = ¢k i
4: Calculate the gradient (Jacobian) J + VG |
5 Extract G from the saved gradient back- é:ﬁ'ﬁé‘ i

propagation data _ [] !
6 Calculate Z = V3(G'G) NS
7. Update H+ JTHJ+ Z ®| 4
8: end for

Kailai Xu Second Order Physics Constrained Learning 36 / 50

Numerical Benchmark

e We consider the heat equation in Q = [0, 1]

gl: =V - (k(x,y)Vu)) + f(x,y) x €Q
u(x,y,0) = x(1 = x)y*(1 — y)? (x,y) €Q
u(x,y,t)=0 (x,y) € 02

@ The diffusivity coefficient k and exact solution u are given by

K(x,y) = 2x> — 1.05x* 4+ x°® + xy + y?
u(x,y,t) = x(1 = x)y*(1 - y)?e”"

@ We learn a DNN approximation to x using full-field observations of u

/{(Xay) ~ N@(X7y)

Kailai Xu Second Order Physics Constrained Learning

37 /50

Convergence

@ The optimization problem is given by

n+1 n 2

—um.
m|n L(O ZZ U—— F;J(u”+1; 0) — fiZ.H

Fij(u n+1.0): the 4-point finite difference approximation to the
Laplacian V - (NgVu).

Loss Function

— BFGS
ADAM

—— LBFGS

—— Trust Region

1000 2000 3000 4000 5000
Iterations

Kailai Xu Second Order Physics Constrained Learning 38 / 50

Effect of PDEs

Ny — (PDE Solver) — Loss Function

@ Consider the loss function excluding the effects of PDEs

o Eigenvalue magnitudes of V2L(6) and V2/(6)

VL) o

DNN-PDE .

V21(8)
DNN Only *

Kailai Xu

i

1(0) = Z(Ne(xi,j,y,',j) — k(X1 ¥ij))?

Second Order Physics Constrained Learning

N/ / . -~ ///
YA N/ ~N
L | !
/. N
\[I oY
L A ' .
BFGS LBFGS Trust Region

39 /50

Effect of PDEs

@ Most of the eigenvalue directions at the local landscape of loss
functions are “flat” = “effective degrees of freedom (DOFs)".

@ Physical constraints (PDEs) further reduce effective DOFs:

BFGS LBFGS Trust Region

DNN-PDE 31 22 35
DNN Only 34 41 38

Kailai Xu Second Order Physics Constrained Learning 40 / 50

Effect of Widths and Depths

@ The ratio of zero eigenvalues increases as
o the number of hidden layers increase for a fixed number (20) of
neurons per layer (unit: %)

Hidden Layers LBFGS BFGS

Kailai Xu

Trust Region

1
2
3

76.54 72.84
98.2 94.41
98.7 98.15

77.78
93.21
96.09

o the number of neurons per layer increases for a fixed number (3) of
hidden layers (unit: %)

Neurons per Layer LBFGS BFGS

Trust Region

5
10
20

93.83 85.19
97.7 83.52
96.2 97.39

69.14
89.66
96.42

Second Order Physics Constrained Learning

41 /50

Effect of Widths and Depths: Conjecture

@ Implications for overparametrization: the minimizer lies on a
relatively higher dimensional manifold of the parameter space.

o Conjecture: overparameterization makes the optimization easier due
to a larger chance of hitting the minimizer manifold.

A AT

Minimizers Minimizers Minimizers
Dimension =2 Dimension =1 Dimension =0

Kailai Xu Second Order Physics Constrained Learning 42 / 50

Summary

@ Trust region methods converge significantly faster compared to first
order/quasi second order methods by leveraging Hessian information.

@ Second order physics constrained learning helps you calculate Hessian
matrices efficiently.

@ The local minimum of DNNs have small effective degrees of freedom
compared to DNN sizes.

Kailai Xu Second Order Physics Constrained Learning 43 / 50

Conclusion

mfin Lp(up) s.t. Fp(f,up) =0

v/ Develop algorithms and tools for solving inverse problems by
combining DNNs and numerical PDE solvers.

=)

Contribution 3
2nd Order Physics Constrained Learning
Accelerating Convergence and Improving Accuracy
with Hessian Information

——— Update
[Model Parameters|

«—— Optimizer

Calculate
Gradients

——— Calibrated Model
<tol?

—

Predicted
Data

=)

t
Initial and
Boundary Conditions.

Kailai Xu

Conclusion

44 / 50

A General Approach to Inverse Modeling

Data Deep Neural Networks : M
2 \ — r':f_r“ - g

° - / AdFem,jl
Finite Element Library
A D C M E ‘ .‘ _\. for Inverse Modeling

: https://github.com/kailaix/AdFem.jl

FwiFlow.jl 7 -
Multiphase Flow .j
Nonlocal Operators M)
https://github.com/lidongzh/FwiFlow.jl NNFEM.jl

Constitutive Law Modeling
ADSeismic.jl Hyperelasticity
General Seismic Inversion Elasto-Plasticity

https://github.com/kailaix/ADSeismic jl https://github.com/kailaix/NNFEM.jl

Kailai Xu Conclusion 45 / 50

Supporting Materials

Kailai Xu Conclusion 46 / 50

Limitations and Future Work

@ Computational cost
o A PDE needs to be solved per inner iteration in the optimization
process
e Calculating Hessians are very expensive: exploit the Hessian structure
to accelerate computations
@ Convergence and accuracy of DNNs
@ lll-posed inverse problems
o Regularization
e Bayesian approach
@ Robustness to noise
@ Theoretical investigations

Kailai Xu Conclusion 47 / 50

Major AD Frameworks

| TensorFlow 1.x PyTorch | JAX
Computational | static and explicit | dynamic and | dynamic and implicit
graph explicit
Programming declarative imperative imperative
Focus graph optimiza- | AD AD
tion, AD
Computing CPU/GPU/TPU CPU/GPU, CPU/GPU/TPU
TPU(-)
e just-in-time com-
e graph optimiza- pilation from Python
. . functions to XLA-
tions and manipu- S
Highlights lations intuitive APls optlmllzed kernels .
® optimized tensor g arbitrary compost-
libraries t|on_of pure functlgns
e high order deriva-
tives
Kailai Xu Conclusion 48 / 50

AD Frameworks

Operator
. O)

z=x*y y=A* y = compute_fem_

z=x+ty y=A\x stiffness_matrix(x, mesh)
Granularity Arithmetic Tensor & Simulation

TAPENADE G PyTorch OpenVFOAM

MeDiPack Adept ? ' -P. SU2
eI A <% dolfin-adjoint
Da
Kailai Xu

Conclusion 49 / 50

Static Graph versus Dynamic Graph

Static Graph Dynamic Graph

e graph optimizations, rewrit-
ing, and simplifications;

e easy to reason about and an-
alyze

Pros e intuitive: run to define.

e difficult to reason about and
optimize;

e encourage trial and error in-
stead of computations itself.

Cons | e compiled-language-like: de-
fine to run.

Kailai Xu Conclusion 50 / 50

	Inverse Modeling
	Software Implementation
	First Order Physics Constrained Learning
	Second Order Physics Constrained Learning
	Conclusion

