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Inverse Modeling
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Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

mein Lp(up) s.t. Fp(6,up) =0

@ The loss function L, measures the discrepancy between the prediction
up and the observation wohs, €.g., La(up) = ||up — tobs|3.

@ 0 is the model parameter to be calibrated.

@ The physics constraints Fx(6, up) = 0 are described by a system of
partial differential equations or differential algebraic equations
(DAEs); e.g.,

Fh(g, Uh) = A(@)Uh - fh =0
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Function Inverse Problem

mfin Lh(uh) s.t. Fh(f, uh) =0

What if the unknown is a function instead of a set of parameters?
@ Koopman operator in dynamical systems.
@ Constitutive relations in solid mechanics.
@ Turbulent closure relations in fluid mechanics.

The candidate solution space is infinite dimensional.
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Machine Learning for Computational Engineering

m@in Lp(up)  s.t. ’ Frn(Ng, up) =0 ‘ < Solved numerically

@ Use a deep neural network to approximate the (high dimensional)

unknown function;
@ Solve up from the physical constraint using a numerical PDE solver;
© Apply an unconstrained optimizer to the reduced problem

mein Lp(up(0))

— 2,
Uy = CTUy

First Principles Numerical Schemes

Inverse Modeling Neural Networks
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Gradient Based Optimization

mein Lp(un(0))
@ Steepest descent method:

Ort1 Ok — uVolLn(un(0k))
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Contributions

Goal

Develop algorithms and tools for solving inverse problems by
combining DNNs and numerical PDE solvers.
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Kailai Xu

Contribution 3
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Ecosystem for Inverse Modeling

ADSeismic
-
AdFem  ~=S€ismic| | =

ADCME ‘ ® | FQ ‘t}fr:;

ADCME|

Getting Started

ion in AdF{
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Applications

1=
== i
= Geomechanics

Fluid Dynamics |

TN /

_ ‘Stochastic Processes
Applications
ol 4

il 7\
Solid Mechanics |

T

—y

Kailai Xu

=] F
Software Implementation

See the publication list at: https://github.com/ka.iIari'x/'l'-{DCME.iI

DA

11/ 50



Applications: Solid Mechanics

@ Modeling constitutive relations with deep neural networks

175 175
6 1.50 6 1.50
L 1.25 B 1.25
g 1.00 E 1.00
>2 0.75 >2 0.75
0.50 0.50

0 0
0.25 0.25

0 2 4 6 8 10 0 2 i 6 8 10
X (cm) X (cm)

Kailai Xu*, Daniel Z. Huang*, and Eric Darve. Learning constitutive relations using symmetric positive definite neural
networks. Journal of Computational Physics 428 (2021): 110072.

Daniel Z. Huang*, Kailai Xu*, Charbel Farhat, and Eric Darve. Learning constitutive relations from indirect observations
using deep neural networks. Journal of Computational Physics 416 (2020): 109D491.
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Applications: Seismic Inversion

@ ADSeismic: AD + Seismic Inversion
o NNFWI: DNN + FWI

<+ Backpropagation
Acoustic o

Inversion Quantities. — Forward Computation

P .
GV @S
Velocity Model ! Observations
i — — Elastic
Earthquake location P P ool P
and a =
source time function i,

U vt oy )
=t b+

Earthquake rupture
imaging ‘

2 3 s To
Weiqiang Zhu*, Kailai Xu*, Eric Darve, and Gregory C. Beroza. A general approach to seismic inversion with automatic
differentiation. Computers & Geosciences (2021): 104751.

Weiqiang Zhu*, Kailai Xu*, Eric Darve, Biondo Biondi, and Gregory C. Beroza. Integrating Deep Neural Networks with

Full-waveform Inversion: Reparametrization, Regularization, and Uncertainty Quantification. Submitted.
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Applications: Fluid Dynamics

Coordinates x —\

Physical Fields

Deep Neural Network Approximation
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Tiffany Fan, Kailai Xu, Jay Pathak, and Eric Darve. Solving Inverse Problems in Steady State Navier-Stokes Equations
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Applications: Geo-mechanics

@ Learning intrinsic fluid properties from indirect seismic data using
automatic differentiation
@ Modeling viscoelasticity using deep neural networks
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Dongzhuo Li*, Kailai Xu*, Jerry M. Harris, and Eric Darve. Coupled Time-Lapse Full-Waveform Inversion for
Subsurface Flow Problems Using Intrusive Automatic Differentiation. Water Resources Research 56, no. 8 (2020):
€2019WR027032.

Kailai Xu, Alexandre M. Tartakovsky, Jeff Burghardt, and Eric Darve. Learning Viscoelasticity Models from Indirect
Data using Deep Neural Networks. Submitted.
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Applications: Stochastic Processes

@ Approximating unknown distributions with deep neural networks in a
stochastic process/differential equation.
o Adversarial Inverse Modeling (AIM): adversarial training
o Physics Generative Neural Networks (PhysGNN): optimal
transport
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Kailai Xu and Eric Darve. Solving Inverse Problems in Stochastic Models using Deep NeuralNetworks and Adversarial
Training. Submitted.

Kailai Xu, Weiqgiang Zhu, and Eric Darve. Learning Generative Neural Networks with Physics Knowledge. Submitted.
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Automatic Differentiation

Bridging the technical gap between deep learning and inverse modeling:

Neural Network Layers

Mathematical Fact O 8 O ’
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Computational Graph for Numerical Schemes

@ To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “"AD language”: computational
graph.

@ No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.
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ADCME: Computational-Graph-based Numerical

Simulation
ADCME
Computational Graph

Custom Optimizers Output Custom Operators
CustomOptimizer 4[ J customop()
BFGS i O cuba &

Gradient / S
Ipopt H \ O Fortran Kernel [ |
NLopt O :O Checkpointing 41:1: o
Snopt O FPGA e

O MUMPS Parallel Solver
----------------------------------------- input [l [ | [ | '
# Numerical PDE Schemes, Linear Solvers, MPI Operations, Optimization Solvers, Neural Networks, ...
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How ADCME works

o ADCME translates your numerical simulation codes to computational
graph and then the computations are delegated to a heterogeneous
task-based parallel computing environment through TensorFlow

runtime.
ADCME l
¢-®
> ai = GPU
MJ F' 5’, ) TPU
\ e
- o~ Se Smlc Heterogenous
AD-Capable l Task-based
Numerical Simulator Engines Parallel Runtime
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Summary

@ Mathematically equivalent techniques for calculating gradients:
o gradient back-propagation (DNN)
o discrete adjoint-state methods (PDE)
e reverse-mode automatic differentiation
@ Computational graphs bridge the gap between gradient calculations in
numerical PDE solvers and DNNs.
@ ADCME extends the capability of TensorFlow to PDE solvers,
providing users a single piece of software for numerical simulations,
deep learning, and optimization.
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Contribution 3

2nd Order Physics Constrained Learning
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Motivation

. . DNN: Explicit
@ Most AD frameworks only deal with explicit

b

operators, i.e., the functions that has analytical  , \
derivatives, or composition of these functions. N\

@ Many scientific computing algorithms are x > O -y
iterative or implicit in nature. y=a(Wx +b)

Numerical Schemes:
Implicit, Iterative

Linear/Nonlinear  Explicit/Implicit Expression

Linear Explicit y = Ax 6 ~

Nonlinear Explicit y = F(x)

Linear Implicit Ay = x f— O Y
Nonlinear Implicit F(x,y)=0 AW, 0)y=f
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Example

o Consider a function f : x — y, which is implicitly defined by

Fx,y)=x*=(y’+y) =0

If not using the cubic formula for finding the roots, the forward
computation consists of iterative algorithms, such as the Newton'’s
method and bisection method

y0<_0 [« —M, r< M, m+20
k « 0 while |F(x, m)| > € do
while |F(x, y%)| > ¢ do c« 24P
5k%F(X7yk)/F)//(X,yk) if F(X,m)>0then
YRl kg a+m
k—k+1 else
end while b m
Return y* end if
end while
Return ¢
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Example

@ An efficient way to do automatic differentiation is to apply the implicit
function theorem. For our example, F(x,y) = x> — (y3 +y) = 0;
treat y as a function of x and take the derivative on both sides

3x2
3y2+1

3¢~ 3y(x)PY(x) — ¥'(x) = 0= y/(x) =

The above gradient is exact.

Can we apply the same idea to inverse modeling?

Kailai Xu First Order Physics Constrained Learning 25 / 50



Physics Constrained Learning (PCL)
mgin Lp(up) s.t. Fp(0,up) =0

@ Assume that we solve for up = Gp(6) with Fu(6, up) = 0, and then

Ln(0) = La(Gh(9))

@ Applying the implicit function theorem

BF/,(G, uh) + th(Q, uh) f)Gh(e) — 0= 66},(9) _ _(BF/,(G, uh))*l 8Fh(9, uh)
o0 Oup, a0 00 Oup o0

@ Finally we have

)—1 OF(8, up)
up=Gp(0) 00

8[},(9) _ 8Lh(uh) 8Gh(0) _ _6Lh(uh) (th(G,uh)

00 B Buh o0 - Ouh 8Uh

up=Gp(0)
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Penalty Methods

mfin Lp(up) s.t. Fp(f,up) =0

@ Penalty Method: parametrize f with fy (DNNs, linear finite element
basis, radial basis functions, etc.) and incorporate the physical
constraint as a penalty term (regularization, prior, ...) in the loss

function.
min Ly(un) + Al Fa(fo, un) 3
s Un

+ Easy to implement (no need for differentiating numerical solvers)
— May not satisfy physical constraint F,(fy, uy) = 0 accurately;
— High dimensional optimization problem; both 6 and uy are variables.
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Physics Constrained Learning for Stiff Problems

@ PCL is superior for stiff problems.
@ Consider a model problem

mein |u— wol|3 s.t. Au= 6y
PCL: miny(6) = 047y — wl3 = (6~ 1)?]uol3
Penalty Method : rénin Lo(8, up) = |Jun — woll3 + M| Aup — 0y |3
;U

The condition number of Ay is

O T Y (]

and therefore, the condition number of the unconstrained optimization
problem from the penalty method is equal to the square of the condition
number of the PCL asymptotically.
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Physics Constrained Learning for Stiff Problems

Parameter Inverse Problem

Au+kig(x)u=0
g(x) = 5x2 + 2y

9o (x) = 6,%% + 6,y% + O3xy
+0,x + 6y + 64

Approximate Unknown Functions
using DNNs

=V (f(w)Vu) = h(x)

fa = [MV GO0

Kailai Xu
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Summary

@ Implicit and iterative operators are ubiquitous in numerical PDE
solvers. These operators are insufficiently treated in deep learning
software and frameworks.

@ PCL helps you calculate gradients of implicit/iterative operators
efficiently.

@ PCL leads to faster convergence and better accuracy compared to
penalty methods for stiff problems.
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Motivation

Gradient-based Optimization

A 4
1%t Order “1.5t Order” 2nd Order
Trust Region Method
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Overview

Loss Function

—— BFGS
ADAM

107 —— LBFGS
—— Trust Region
] 1000 2000 3000 4000 5000
Iterations

Goal

Accelerate convergence and improve accuracy with Hessian infor-

mation
Challenge

Calculate Hessians for coupled systems of PDEs and DNNs
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Trust Region vs. Line Search

Trust Region

@ Approximate f(xx + p) by a model
quadratic function

1
my(p) = fx +ngp + EpTBkP

fc = f(xk), gk = VF(xi), B = V2 (x«)

@ Solve the optimization problem within a
trust region ||p|| < Ag

pk = arg mpin mi(p) st |p|l < Ak
@ If decrease in f(xx + px) is sufficient, then

update the state xx11 = Xk + pk; otherwise,
Xk+1 = Xk and improve Ay.

Kailai Xu Second Order Physics Constrained Learning

oDy K
Xk Pk
Trust Region Line Search

Line Search

@ Determine a descent
direction py

@ Determine a step size ay
that sufficiently reduces

f(xk + apk)

@ Update the state
Xk+1 = Xk + Qe Pi
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Second Order Physics Constrained Learning

o Consider a composite function with a vector input x and scalar output

v =f(G(x)) (1)
o Define
of (y O*f(y)
Fily) =  fuly) =
) a7 ) Ayi Oy,
_ 8Gk(X) o asz(X)
Gri(x) = “ox G ir(x) = Oxdx,
o Differentiate Equation (1) with respect to x;
ov
— = 4Gy 2
ox; k=, ( )
o Differentiate Equation (2) with respect to x;
0?v
= f1rGi.iGrj+ fi Gy jj
0x;0x; r i G Tk G
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Second Order Physics Constrained Learning

In the vector form,

Vv = (VG) V3 (VG)+V*(GTG) G=Vf

@ Consider a function composed of a sequence of computations

v=>0,(Pp_1(-- - (P1(2))))

1: Initialize H < 0

2: fork=m—-—1,m—2,...,1do s
3: Define f := ¢m(¢mf1(- c (¢k+1(~)))), G = ¢k i
4: Calculate the gradient (Jacobian) J + VG |
5 Extract G from the saved gradient back- é:ﬁ'ﬁé‘ i

propagation data _ [ ] !
6 Calculate Z = V3(G'G) NS
7. Update H+ JTHJ+ Z ®| 4
8: end for
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Numerical Benchmark

e We consider the heat equation in Q = [0, 1]

gl: =V - (k(x,y)Vu)) + f(x,y) x €Q
u(x,y,0) = x(1 = x)y*(1 — y)? (x,y) €Q
u(x,y,t)=0 (x,y) € 02

@ The diffusivity coefficient k and exact solution u are given by

K(x,y) = 2x> — 1.05x* 4+ x°® + xy + y?
u(x,y,t) = x(1 = x)y*(1 - y)?e”"

@ We learn a DNN approximation to x using full-field observations of u

/{(Xay) ~ N@(X7y)

Kailai Xu Second Order Physics Constrained Learning
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Convergence

@ The optimization problem is given by

n+1 n 2

—um.
m|n L(O ZZ U—— F;J(u”+1; 0) — fiZ.H

Fij(u n+1.0): the 4-point finite difference approximation to the
Laplacian V - (NgVu).

Loss Function

— BFGS
ADAM

—— LBFGS

—— Trust Region

1000 2000 3000 4000 5000
Iterations
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Effect of PDEs

Ny — (PDE Solver) — Loss Function

@ Consider the loss function excluding the effects of PDEs

o Eigenvalue magnitudes of V2L(6) and V2/(6)

VL) o

DNN-PDE .

V21(8)
DNN Only *

Kailai Xu

i

1(0) = Z(Ne(xi,j,y,',j) — k(X1 ¥ij))?

Second Order Physics Constrained Learning
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YA N/ ~N
L | !
/. N
\[ I oY
L A ' .
BFGS LBFGS Trust Region
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Effect of PDEs

@ Most of the eigenvalue directions at the local landscape of loss
functions are “flat” = “effective degrees of freedom (DOFs)".

@ Physical constraints (PDEs) further reduce effective DOFs:

BFGS LBFGS Trust Region

DNN-PDE 31 22 35
DNN Only 34 41 38

Kailai Xu Second Order Physics Constrained Learning 40 / 50



Effect of Widths and Depths

@ The ratio of zero eigenvalues increases as
o the number of hidden layers increase for a fixed number (20) of
neurons per layer (unit: %)

# Hidden Layers LBFGS BFGS

Kailai Xu

Trust Region

1
2
3

76.54 72.84
98.2 94.41
98.7 98.15

77.78
93.21
96.09

o the number of neurons per layer increases for a fixed number (3) of
hidden layers (unit: %)

# Neurons per Layer LBFGS BFGS

Trust Region

5
10
20

93.83 85.19
97.7 83.52
96.2 97.39

69.14
89.66
96.42

Second Order Physics Constrained Learning
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Effect of Widths and Depths: Conjecture

@ Implications for overparametrization: the minimizer lies on a
relatively higher dimensional manifold of the parameter space.

o Conjecture: overparameterization makes the optimization easier due
to a larger chance of hitting the minimizer manifold.

A AT

Minimizers Minimizers Minimizers
Dimension =2 Dimension =1 Dimension =0
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Summary

@ Trust region methods converge significantly faster compared to first
order/quasi second order methods by leveraging Hessian information.

@ Second order physics constrained learning helps you calculate Hessian
matrices efficiently.

@ The local minimum of DNNs have small effective degrees of freedom
compared to DNN sizes.
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Conclusion

mfin Lp(up) s.t. Fp(f,up) =0

v/ Develop algorithms and tools for solving inverse problems by
combining DNNs and numerical PDE solvers.
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A General Approach to Inverse Modeling

Data Deep Neural Networks : M
2 \ — r':f_r“ - g

° - / AdFem,jl
Finite Element Library
A D C M E ‘ .‘ _\. for Inverse Modeling

: https://github.com/kailaix/AdFem.jl

FwiFlow.jl 7 -
Multiphase Flow .j
Nonlocal Operators M )
https://github.com/lidongzh/FwiFlow.jl NNFEM.jl

Constitutive Law Modeling
ADSeismic.jl Hyperelasticity
General Seismic Inversion Elasto-Plasticity

https://github.com/kailaix/ADSeismic jl https://github.com/kailaix/NNFEM.jl
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Supporting Materials
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Limitations and Future Work

@ Computational cost
o A PDE needs to be solved per inner iteration in the optimization
process
e Calculating Hessians are very expensive: exploit the Hessian structure
to accelerate computations
@ Convergence and accuracy of DNNs
@ lll-posed inverse problems
o Regularization
e Bayesian approach
@ Robustness to noise
@ Theoretical investigations
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Major AD Frameworks

| TensorFlow 1.x PyTorch | JAX
Computational | static and explicit | dynamic and | dynamic and implicit
graph explicit
Programming declarative imperative imperative
Focus graph  optimiza- | AD AD
tion, AD
Computing CPU/GPU/TPU CPU/GPU, CPU/GPU/TPU
TPU(-)
e just-in-time com-
e graph optimiza- pilation from Python
. . functions to XLA-
tions and manipu- S
Highlights lations intuitive APls optlmllzed kernels .
® optimized tensor g arbitrary compost-
libraries t|on_of pure functlgns
e high order deriva-
tives
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AD Frameworks

Operator
. O )

z=x*y y=A* y = compute_fem_

z=x+ty y=A\x stiffness_matrix(x, mesh)
Granularity Arithmetic Tensor & Simulation

TAPENADE G PyTorch OpenVFOAM

MeDiPack Adept ? ' -P. SU2
eI A <% dolfin-adjoint
Da
Kailai Xu
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Static Graph versus Dynamic Graph

Static Graph Dynamic Graph

e graph optimizations, rewrit-
ing, and simplifications;

e easy to reason about and an-
alyze

Pros e intuitive: run to define.

e difficult to reason about and
optimize;

e encourage trial and error in-
stead of computations itself.

Cons | e compiled-language-like: de-
fine to run.
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