NNFWI
Integrating Deep Neural Networks with Full-waveform Inversion: Reparametrization, Regularization, and Uncertainty Quantification
Architecture
Forward Simulation
Marmousi model | Inital 1D model |
---|---|
BP2004 model | Inital 1D model |
---|---|
Inversion based on Automatic Differentiation
Loss function
Noise level | Marmousi model | BP2004 model |
---|---|---|
$\sigma=0$ | ||
$\sigma=0.5$ |
Marmousi model
Noise level | Traditional FWI | NNFWI |
---|---|---|
$\sigma=0$ | ||
$\sigma=0.5$ | ||
$\sigma=1$ |
BP2004 model
Noise level | Traditional FWI | NNFWI |
---|---|---|
$\sigma=0$ | ||
$\sigma=0.5$ | ||
$\sigma=1$ |
Uncertainty Quantification using Dropout
Inverted $V_p$ | std($V_p$) | std($V_p$)/$V_p$ $\cdot$ 100% |
---|---|---|